Open Access
Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Article Number 71
Number of page(s) 22
DOI https://doi.org/10.1051/mmnp/2020030
Published online 03 December 2020
  1. L. Almeida, M. Duprez, Y. Privat and N. Vauchelet, Mosquito population control strategies for fighting against arboviruses. Math. Biosci. Eng. 16 (2019) 6274–6297. [CrossRef] [PubMed] [Google Scholar]
  2. L. Almeida, Y. Privat, M. Strugarek and N. Vauchelet, Optimal releases for population replacement strategies, application to Wolbachia. SIAM J. Math. Anal. 51 (2019) 3170–3194. [CrossRef] [Google Scholar]
  3. L. Alphey, A. McKemey, D. Nimmo, M, Neira, R. Lacroix, K. Matzen and C. Beech, Genetic control of aedes mosquitoes. Pathogens Glob. Health 107 (2013) 170–179. [CrossRef] [Google Scholar]
  4. N. Barton and M. Turelli, Spatial waves of advances with bistable dynamics: cytoplasmic and genetic analogues of Allee effects. Am. Natural. 78 (2011) E48–E75. [Google Scholar]
  5. P.-A. Bliman and N. Vauchelet, establishing traveling wave in bistable reaction-diffusion system by feedback. IEEE Control Syst. Lett. 1 (2017) 62–67. [CrossRef] [Google Scholar]
  6. C. Camacho, B. Zou and M. Briani, On the dynamics of capital accumulation across space. Eur. J. Oper. Res. 186 (2008) 451–465. [CrossRef] [Google Scholar]
  7. J. Garnier, L. Roques and F. Hamel, Success rate of a biological invasion in terms of the spatial distribution of the founding population. Bull. Math. Biol. 74 (2012) 453–473. [CrossRef] [Google Scholar]
  8. A. Hancock, P. Sinkins and H. Charles, Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLoS Negl. Trop. Dis. 5 (2011) 1–10. [CrossRef] [Google Scholar]
  9. A. Henrot and M. Pierre, Vol. 48 of Variation et optimisation de formes. Une analyse géométrique [A geometric Analysis] (2005). [Google Scholar]
  10. A. Hoffmann et al., Successful establishment of Wolbachia in Aedes populations tosuppress dengue transmission. Nature 7361 (2011) 454–457. [CrossRef] [PubMed] [Google Scholar]
  11. H. Hughes and N. Britton, Modeling the use of Wolbachia to control dengue fevertransmission. Bull. Math. Biol. 75 (2013) 796–818. [CrossRef] [Google Scholar]
  12. J. Húska, Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains. J. Differ. Equ. 226 (2006) 541–557. [CrossRef] [Google Scholar]
  13. O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Uralceva, Linear and quasilinear equations of parabolic type (1968). [CrossRef] [Google Scholar]
  14. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris (1969). [Google Scholar]
  15. E. Trelat, J. Zhu and E. Zuazua, Allee optimal control of a system in ecology. Math. Models Methods Appl. Sci. (2018) 1665–1697. [CrossRef] [Google Scholar]
  16. T. Walker et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 7361 (2011) 450–453. [CrossRef] [Google Scholar]
  17. A. Zlatos, Sharp transition between extinction and propagation of reaction. J. Am. Math. Soc. 19 (2005) 251–263. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.