Math. Model. Nat. Phenom.
Volume 15, 2020
Mathematical Models and Methods in Epidemiology
Article Number 72
Number of page(s) 39
Published online 04 December 2020
  1. C.J. Browne, A multi-strain virus model with infected cell age structure: Application to HIV. Nonlinear Anal. 22 (2015) 354. [CrossRef] [Google Scholar]
  2. L.-M. Cai, N. Tuncer and M. Martcheva, How does within-host dynamics affect population-level dynamics? insights from an immuno-epidemiological model of malaria. Math. Methods Appl. Sci. 40 (2017) 6424–6450. [CrossRef] [Google Scholar]
  3. D.N.C.C. Costa et al., Culling Dogs in Scenarios of Imperfect Control: Realistic Impact on the Prevalence of Canine Visceral Leishmaniasis. PLoS Negl. Trop. Dis. 7 (2013) e2355. [CrossRef] [PubMed] [Google Scholar]
  4. O. Courtenay et al., Heterogeneities in Leishmania infantum infection: Using skin parasite burdens to identify highly infectious dogs. PLoS Negl. Trop. Dis. 8 (2014) e2583. [CrossRef] [PubMed] [Google Scholar]
  5. DNDi, About Leishmaniasis. Available from: (2016). [Google Scholar]
  6. C. Dye, The epidemiology of canine visceral leishmaniasis in southern France: classical theory oers another explanation of the data. Parasitology 96 (1988) 19–24. [CrossRef] [PubMed] [Google Scholar]
  7. C. Dye, The logic of visceral leishmaniasis control. Am. J. Trop. Med. Hyg. 55 (1996) 125–130. [CrossRef] [PubMed] [Google Scholar]
  8. S.M. Garba, A.B. Gumel and M.R. Abu Bakar, Backward bifurcations in dengue transmission dynamics. Math. Biosci. 215 (2008) 11–25. [CrossRef] [Google Scholar]
  9. M.A. Gilchrist and A. Sasaki, Modeling host-parasite coevolution: a nested approach based on mechanistic models. J. Theor. Biol. 218 (2002) 289–308. [CrossRef] [PubMed] [Google Scholar]
  10. H. Gulbudak et al., Vector-borne pathogen and host evolution in a structured immuno-epidemiological system. Bull. Math. Biol. 79 (2017) 325–355. [CrossRef] [Google Scholar]
  11. M. Iannelli, M. Martcheva and F. Milner, Gender-structured population modeling. Mathematical methods, numerics, and simulations. SIAM, Philadelphis (2005). [CrossRef] [Google Scholar]
  12. B.Y. Lee et al. The Economic Value of a Visceral Leishmaniasis Vaccine in Bihar State, India. Am. J. Trop. Med. Hyg. 86 (2012) 417–425. [Google Scholar]
  13. X.-Z. Li, J.Y. Yang and M. Martcheva, Age Structured Epidemic Modeling. Springer, Switzerland (2020). [Google Scholar]
  14. A. Mubayi et al., Transmission dynamics and underreporting of Kala-azar in the Indian state of Bihar. J. Theor. Biol. 262 (2010) 177–185. [CrossRef] [PubMed] [Google Scholar]
  15. R. Reithinger et al., Are insecticide-impregnated dog collars a feasible alternative to dog culling as a strategy for controlling canine visceral leishmaniasis in Brazil? Int. J. Parasitol. 34 (2004) 55–62. [CrossRef] [Google Scholar]
  16. L.M. Ribas et al., Estimating the Optimal Control of Zoonotic Visceral Leishmaniasis by the Use of a Mathematical Model. Scientic World J 2013 (2013) 810380. [Google Scholar]
  17. K.S. Rock et al., Progress in the Mathematical Modelling of Visceral Leishmaniasis. Elsevier Ltd., Amsterdam (2016). [Google Scholar]
  18. K.S. Rock, D.A. Wood and M.J. Keeling, Age- and bite-structured models for vector-borne diseases. Epidemics 12 (2015) 20–29. [CrossRef] [PubMed] [Google Scholar]
  19. A. Stauch et al., Model-based investigations of different vector-related intervention strategies to eliminate visceral leishmaniasis on the indian subcontinent. PLoS Negl. Trop. Dis. 8 (2014) 1–9. [CrossRef] [Google Scholar]
  20. H.R. Thieme, Mathematics in Population Biology. 1st edn. Princeton University Press, Princeton (2003). [Google Scholar]
  21. N. Tuncer et al., Structural and practical identiability issues of immuno-epidemiological vector-host models with application to Rift Valley Fever. Bull. Math. Biol. 78 (2016) 1796–1827. [CrossRef] [Google Scholar]
  22. J.S. Welker and M. Martcheva, A novel multi-scale immuno-epidemiological model of visceral leishmaniasis in dogs. Biomath 8 (2019) 1901026. [CrossRef] [Google Scholar]
  23. WHO, Visceral leishmaniasis therapy: statement on the outcome of ameeting (2009). url: [Google Scholar]
  24. B.G. Williams and C. Dye, Infectious disease persistence when transmission varies seasonally. Math. Biosci. 145 (1997) 77–88. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.