Open Access
Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Article Number 73
Number of page(s) 26
DOI https://doi.org/10.1051/mmnp/2020036
Published online 04 December 2020
  1. A.M. Agnone, Approximations for weak and strong oblique shock wave angles. AIAA J. 32 (1994) 1543–1545. [CrossRef] [Google Scholar]
  2. J.D. Anderson Jr., Hypersonic and High Temperature Gas Dynamics. McGraw-Hill Book Company, New York (1989). [Google Scholar]
  3. J. Anderson Jr., Modern Compressible Flow: With Historical Perspective. McGraw Hill Book Company, New York (1982). [Google Scholar]
  4. I. Barin, F. Sauer, R.E. Schultze and W.S. Sheng, Thermochemical Data on Pure Substances, Pt. 1, VCH Publishers, Wiesbaden, Germany (1989). [Google Scholar]
  5. M. Boun-jad, T. Zebbiche and A. Allali, Gas effect at high temperature on the supersonic nozzle conception. Int. J. Aeronaut. Space Sci. 18 (2017) 82–90. [CrossRef] [Google Scholar]
  6. M. Boun-jad, T. Zebbiche and A. Allali, High temperature gas effect on the Prandtl-Meyer function with application for supersonic nozzle design. Mech. Ind. 18 (2017) 219. [CrossRef] [Google Scholar]
  7. M. Boun-jad, T. Zebbiche and A. Allali, High temperature gas effect on the supersonic axisymetric minimum length Nozzle design. Int. J. Eng. Tech. Res. 07 (2017) 23–30. [Google Scholar]
  8. M. Boun-jad, T. Zebbiche and A. Allali, Numerical study of gas effect at high temperature on the supersonic plug and expansion deflexion nozzles design. Int. Res. J. Eng. Technol. 04 (2017) 1480–1488. [Google Scholar]
  9. M. Boun-jad and T. Zebbiche, High temperature gas effect on the normal shock wave parameters. Int. J. Mech. Prod. Eng. 5 (2017) 78–85. [Google Scholar]
  10. A. Burcat and B. McBride, Ideal Gas Thermodynamic Data for Compounds Used in Combustion and Air-Pollution, TAE 675, Technion Israel Institute of Technology, Haifa, Israel (1992). [Google Scholar]
  11. A.R. Curtis, High-ordre Explicit Runge Kutta Formulae. Their uses, and limitations. J. Inst. Math. Appl. 16 (1975) 35–55. [CrossRef] [Google Scholar]
  12. T. Elaichi and T. Zebbiche, Stagnation temperature effect on the conical shock with application for air. Chin. J. Aeronaut. 31 (2018) 672–697. [CrossRef] [Google Scholar]
  13. E.L. Goldsmith and J. Seddon, Intake Aerodynamics, 2nd edn. Blackwell Science (1999). [Google Scholar]
  14. W.M. Haynes, CRC Handbook of Chemistry and Physics, 93ème edn. CRC Press/Taylor and Francis, Boca Raton (2012). [Google Scholar]
  15. A. Iserles, A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press (1996). [Google Scholar]
  16. E.T. Kenneth, Computation of Thermally Perfect Properties of Oblique Shock Waves, NASA CR-4749 (1996). [Google Scholar]
  17. E.T. Kenneth, Computation of thermally perfect oblique shcok waves properties, in AIAA-97-0868, 35th Aerospace Sciences Meetingand Exhibit, Aerospace Sciences Meetings, 06–09 January (1997). [Google Scholar]
  18. Z. Kopal, Tables of Supersonic Flow Around Cones. Massachusetts Institute of Technology, Dept. of Electrical Engineering Tech. Report No. 1, Cambridge, Mass. (1947). [Google Scholar]
  19. J.W. Maccoll, The conical shock wave formed by a cone moving at high speed, Proc. Roy. Soc. London A 159 (1937) 459–472. [CrossRef] [Google Scholar]
  20. B.J. McBride, S. Gordon and M.A. Reno, Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species, NASA TM 4513 (1993). [Google Scholar]
  21. B.J. McBride, S. Gordon and M.A. Reno, Thermodynamic data for fifty reference elements, NASA TP-3287 (1993). [Google Scholar]
  22. C.R. Peterson and P.G. Hill, Mechanics and Thermodynamics of Propulsion. Addition-Wesley Publishing Company Inc., New York, USA (1965). [Google Scholar]
  23. A. Ralston and P. Rabinowitz, A First Course in Numerical Analyses. McGraw-Hill Book Company (1985). [Google Scholar]
  24. J.L. Sims, Tables for Supersonic Flow Around Right Circular Cones at Zero Angle of Attack, NASA SP-3004 (1964). [Google Scholar]
  25. G.P. Sutton and O. Biblarz, Rocket Propulsion Elements, 8éme édition. John Wiley and Sons (2010). [Google Scholar]
  26. R. Takhnouni, T. Yahiaoui and A. Allali, Stagnation temperature effect on the supersonic flow around pointed airfoils with application for air. Arab. J. Sci. Eng. 44 (2019) 1185–1203. [CrossRef] [Google Scholar]
  27. K.E. Tatum, Computation of thermally perfect oblique shock wave properties, in 35th Aerospace Sciences Meeting and Exhibit, Reno, AIAA-97-0868 (1997). [Google Scholar]
  28. G. Xiang et al., Cellular aluminum particle-air detonation based on realistic heat capacity model. Combust. Sci. Technol. 192 (2020) 1931–1945. [CrossRef] [Google Scholar]
  29. G. Xiang et al., Numerical study on transition structures of oblique detonations with expansion wave from finite-length cowl. Phys. Fluids 32 (2020) 056108. [CrossRef] [Google Scholar]
  30. G. Xiang et al., Study of the features of oblique detonation induced by a finite wedge in hydrogen-air mixtures with varying equivalence ratios. Fuel 264 (2020) 116854. [CrossRef] [Google Scholar]
  31. T. Zebbiche, Effect of stagnation temperature on the normal shock wave. Int. J. Aeronaut. Space Sci. 10 (2009) 1–14. [CrossRef] [Google Scholar]
  32. T. Zebbiche and Z. Youbi, Effect of stagnation temperature on supersonic flow parameters. Application for air in nozzles. Aeronaut. J. 111 (2007) 31–40. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.