Math. Model. Nat. Phenom.
Volume 15, 2020
Coronavirus: Scientific insights and societal aspects
Article Number 31
Number of page(s) 13
Published online 14 May 2020
  1. M. Ajelli, B. Gonçalves, D. Balcan, V. Colizza, H. Hu, J.J. Ramasco, S. Merler and A. Vespignani, Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models. BMC Infect. Dis. 10 (2010) 190. [CrossRef] [PubMed] [Google Scholar]
  2. L.J. Allen, Some discrete-time si, sir, and sis epidemic models. Math. Biosci. 124 (1994) 83–105. [Google Scholar]
  3. M. Banerjee, A. Tokarev and V. Volpert, Immuno-epidemiological model of two-stage epidemic growth. Preprint arXiv:2003.14152 (2020). [Google Scholar]
  4. A. Bouchnita and A. Jebrane, A hybrid multi-scale model of covid-19 transmission dynamics to assess the potential of non-pharmaceutical interventions. Preprint medRxiv 10.1101/2020.04.05.20054460 (2020). [Google Scholar]
  5. W. Dong, K. Heller and A.S. Pentland, Modeling infection with multi-agent dynamics, in International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction. Springer, Berlin (2012) 172–179. [CrossRef] [Google Scholar]
  6. N.M. Ferguson, D.A. Cummings, C. Fraser, J.C. Cajka, P.C. Cooley and D.S. Burke, Strategies for mitigating an influenza pandemic. Nature 442 (2006) 448–452. [Google Scholar]
  7. S. Flaxman, S. Mishra, A. Gandy, H. Unwin, H. Coupland, T. Mellan, H. Zhu, T. Berah, J. Eaton, P. Perez Guzman, et al. Report 13: Estimating the number of infections and the impact of non-pharmaceutical interventions on covid-19 in 11 Europeancountries (2020). [Google Scholar]
  8. W. Garira, A complete categorization of multiscale models of infectious disease systems. J. Biol. Dyn. 11 (2017) 378–435. [CrossRef] [PubMed] [Google Scholar]
  9. D. Helbing and P. Molnar, Social force model for pedestrian dynamics. Phys. Rev. E 51 (1995) 4282. [Google Scholar]
  10. D.S. Hui, E.I. Azhar, T.A. Madani, F. Ntoumi, R. Kock, O. Dar, G. Ippolito, T.D. Mchugh, Z.A. Memish, C. Drosten, et al. The continuing 2019-ncov epidemic threat of novel coronaviruses to global health–thelatest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 91 (2020) 264. [CrossRef] [Google Scholar]
  11. B. Kabalan, P. Argoul, A. Jebrane, G. Cumunel and S. Erlicher, A crowd movement model for pedestrian flow through bottlenecks. Ann. Solid Struct. Mech. 8 (2016) 1–15. [CrossRef] [Google Scholar]
  12. S.A. Lauer, K.H. Grantz, Q. Bi, F.K. Jones, Q. Zheng, H.R. Meredith, A.S. Azman, N.G. Reich and J. Lessler, The incubation period of coronavirusdisease 2019 (covid-19) from publicly reported confirmed cases: estimation and application. Ann. Internal Med. 172 (2020) 577–582. [Google Scholar]
  13. N.M. Linton, T. Kobayashi, Y. Yang, K. Hayashi, A.R. Akhmetzhanov, S.-m. Jung, B. Yuan, R. Kinoshita and H. Nishiura, Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J. Clin. Med. 9 (2020) 538. [Google Scholar]
  14. Y. Liu, A.A. Gayle, A. Wilder-Smith and J. Rocklöv, The reproductive number of covid-19 is higher compared to sars coronavirus. J. Travel Med. 27 (2020) taaa021. [CrossRef] [PubMed] [Google Scholar]
  15. M. Ministère de la santé, Bulletin hebdomadaire covid 19. Available at: (2020). [Google Scholar]
  16. S. Namilae, A. Srinivasan, A. Mubayi, M. Scotch and R. Pahle, Self-propelled pedestrian dynamics model: Application to passenger movement and infection propagation in airplanes. Physica A 465 (2017) 248–260. [Google Scholar]
  17. J. Rocklöv, H. Sjödin and A. Wilder-Smith, Covid-19 outbreak on the diamond princess cruise ship: estimating the epidemic potential and effectiveness of public health countermeasures. To appear in: J. Travel Medicine (2020) taaa030. [CrossRef] [Google Scholar]
  18. V. Surveillances, The epidemiological characteristics of an outbreakof 2019 novel coronavirus diseases (covid-19)–China, 2020. China CDC Weekly 2 (2020) 113–122. [CrossRef] [Google Scholar]
  19. N. van Doremalen, T. Bushmaker, D.H. Morris, M.G. Holbrook, A. Gamble, B.N. Williamson, A. Tamin, J.L. Harcourt, N.J. Thornburg, S.I. Gerber, et al., Aerosol and surface stability of sars-cov-2 as compared with sars-cov-1. New Engl. J. Med. 382 (2020) 1564–1567. [CrossRef] [PubMed] [Google Scholar]
  20. V. Volpert, M. Banerjee and S. Petrovskii, On a quarantine model of coronavirus infection and data analysis. MMNP 15 (2020) 24. [EDP Sciences] [Google Scholar]
  21. World Health Organization, Coronavirus disease 2019 (covid-19) situation report-41. [Google Scholar]
  22. World Health Organization, Coronavirus disease 2019 (covid-19) situation report-73. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.