Math. Model. Nat. Phenom.
Volume 15, 2020
Coronavirus: Scientific insights and societal aspects
Article Number 75
Number of page(s) 34
Published online 15 December 2020
  1. H. Abbey, An examination of the Reed Frost theory of epidemics. Hum. Biol. 24 (1952) 201–233. [PubMed] [Google Scholar]
  2. R.M. Anderson and R.M. May, Infectious Diseases of Humans. Dynamics and Control. Oxford Univ. Press, Oxford (1992). [Google Scholar]
  3. R.M. Anderson, Discussion: The Kermack-McKendrick epidemic threshold theorem. Bull. Math. Biol. 53 (1991). [Google Scholar]
  4. J. Arino, F. Brauer, P. Van den Driessche, J. Watmough and J. Wu, Simple models for containment of a pandemic. J. Roy. Soc. Interface 3 (2006) 453–457. [CrossRef] [PubMed] [Google Scholar]
  5. J. Arino, F. Brauer, P. Van den Driessche, J. Watmough and J. Wu, A final size relation for epidemic models. Math. Biosci. Eng. 4 (2007) 159–176. [CrossRef] [PubMed] [Google Scholar]
  6. N.T.J. Bailey, The total size of a general stochastic epidemict. Biometrika 40 (1953) 177. [CrossRef] [Google Scholar]
  7. M.S. Bartlett, Stochastic Population Models in Ecology and Epidemiology. Methuen (1960). [Google Scholar]
  8. Q. Bi et al., Epidemiology and Transmission of COVID-19 in Shenzhen China: Analysis of 391 cases and 1,286 of their close contacts. The Lancet (2020). [Google Scholar]
  9. F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology. Springer, New York, Berlin, and Heidelberg (2001). [CrossRef] [Google Scholar]
  10. T. Britton and E. Pardoux (editors) Stochastic Epidemic Models with Inference. Vol. 2255 of Lecture Notes in Mathematics book series. Springer (2019). [CrossRef] [Google Scholar]
  11. D.J. Daley and J. Gani, Epidemic modelling. An introduction. Cambridge Studies in Mathematical Biology. Cambridge University Press, Cambridge (1999). [Google Scholar]
  12. G. De Natale et al., The Covid-19 Infection in Italy: a Statistical Study of an Abnormally Severe Disease J. Clin. Med. 9 (2020) 1564. [CrossRef] [Google Scholar]
  13. O. Diekmann and J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model building, Analysis and Interpretation. John Wiley & Sons (2000). [Google Scholar]
  14. Z. Du et al., Risk for transportation of 2019 novel coronavirus disease from Wuhan to other cities in China. Emerg. Infect. Dis. 26 (2020). [Google Scholar]
  15. S. Esposito and N. Principi, To mask or not to mask children to overcome COVID-19. Eur. J. Pediatr. 179 (2020) 1267–1270. [CrossRef] [Google Scholar]
  16. N. Ferguson et al., Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand, report 9, Imperial College COVID-19 Response Team (march 2020). [Google Scholar]
  17. S. Funk, M. Salathé and V.A.A. Jansenand, Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface 7 (2010) 1247–1256. [CrossRef] [PubMed] [Google Scholar]
  18. M. Greenwood, On the statistical measure of infectiousness. Hyg. Camb. 31 (1931) 336. [CrossRef] [Google Scholar]
  19. Q. Griette, P. Magal and O. Seydi, Unreported cases for age dependent COVID-19 outbreak in Japan. Biology 9 (2020) 132. [CrossRef] [Google Scholar]
  20. A.S. Gumel et al., Modeling strategies for controlling SARS outbreaks based on Toronto, Hong Kong, Singapore and Beijing experience. Proc. Roy. Soc. London 271 (2004) 2223–2232. [CrossRef] [Google Scholar]
  21. H.W. Hethcote, A thousand and one epidemic models. Frontiers in Mathematical Biology, edited by S.A. Levin. Vol. 100 of Lecture Notes in Biomathematics. Springer, Berlin, Heidelberg (1994). [Google Scholar]
  22. E. Hunter, B. Mac Namee and J.D. Kelleher, Using a socioeconomic segregation burn-in model to initialise an agent-based model for infectious diseases. J. Artific. Soc. Soc. Simul. 21 (2018) 9. [CrossRef] [Google Scholar]
  23. D. Juher, I.Z. Kiss and J. Saldaña, Analysis of an epidemic model with awareness decay on regular random networks. J. Theor. Biol. 365 (2015) 457–468. [CrossRef] [PubMed] [Google Scholar]
  24. W. Just, J. Saldaña and Y. Xin, Oscillations in epidemic models with spread of awareness. J. Math. Biol. 76 (2018) 1027–1057. [CrossRef] [PubMed] [Google Scholar]
  25. W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. Lond. A 115 (1927) 700–21. [CrossRef] [Google Scholar]
  26. W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics. Part II. Proc. Roy. Soc. London 138 (1932) 55–83. [Google Scholar]
  27. S.A. Lauer et al., The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 10 (2020). [Google Scholar]
  28. F.-X. Lescure et al., Clinical and virological data of the first cases of COVID-19 in Europe: a case series. The lancet (2020). [Google Scholar]
  29. N. Linton et al., Incubation period and other epidemiological characteristicsof 2019 novel coronavirus infections with right truncation: a statisticalanalysis of publicly available case data. J. Clin. Med. 9 (2020) 538. [CrossRef] [Google Scholar]
  30. N.M. Linton, T. Kobayashi, Y. Yang et al., Epidemiological characteristics of novel coronavirus infection: a statistical analysis of publicly available case data. J. Clin. Med. 9 (2020) 538. [CrossRef] [Google Scholar]
  31. Z. Liu, P.Magal, O. Seydi and G. Webb, Understanding unreported cases in the COVID-19 epidemic outbreak in wuhan, china, and the importance of major public health interventions. Biology 9 (2020) 50. [CrossRef] [Google Scholar]
  32. Z. Liu, P.Magal, O. Seydi and G. Webb, A COVID-19 epidemic model with latency period. Infect. Disease Model. 5 (2020) 323–37. [CrossRef] [Google Scholar]
  33. Q. Li, X. Guan, P. Wu et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382 (2020) 1199–1207. [Google Scholar]
  34. Y. Ohkusa and T. Sugawara, Application of an individual-based model with real data for transportation mode and location to pandemic influenza. J. Infect. Chemother. 13 (2007) 380–9. [CrossRef] [Google Scholar]
  35. A. Perasso, An introduction to the basic reproduction number in mathematical epidemiology. ESAIM: PS 62 (2018) 123–138. [Google Scholar]
  36. G. Rinaldi and M. Paradisi, An empirical estimate of the infection fatality rate of COVID-19 from the first Italian outbreak. Preprint medRxiv DOI: 10.1101/2020.04.18.20070912 (2020). [Google Scholar]
  37. T.W. Russell et al., Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship. Euro Surveill. 26 (2020) 2000256. [Google Scholar]
  38. H. Salje, C. Tran Kiem, N. Lefrancq, N. Courtejoie, P. Bosetti et al., Estimating the burden of SARS-CoV-2 in France, HAL, (2020). [Google Scholar]
  39. A. Perasso, An introduction to the basic reproduction number in mathematical epidemiology. ESAIM: PS 62 (2018) 123–138. [Google Scholar]
  40. F.D. Sahneh, F.N. Chowdhury and C.M. Scoglio, On the existence of a threshold for preventive behavioral responses to suppress epidemic spreading. Sci. Rep. 2 (2012) 632. [CrossRef] [PubMed] [Google Scholar]
  41. X. Tang et al., On the origin and continuing evolution of SARS-CoV-2. National Sci. Rev. 7 (2020) 1012–23. [CrossRef] [Google Scholar]
  42. H.R. Thieme, Mathematics in Population Biology. Princeton Univ. Press, Princeton and Oxford (2003). [Google Scholar]
  43. R. Verity, Estimates of the severity of coronavirus disease 2019: a model-based analysis. The Lancet 20 (2020) 669–677. [CrossRef] [Google Scholar]
  44. L. Willem, F. Verelst, J. Bilcke, N. Hens and P. Beutels Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006–2015). Infect. Diseases 17 (2017) 612. [Google Scholar]
  45. E. Williamson et al., OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. Preprint medRxiv (2020). doi:10.1101/2020.05.06.20092999. [Google Scholar]
  46. P. Whittle, The outcome of a stochastic epidemic – a note on Baily’s paper. Biometrika 42 (1955) 116–122. [Google Scholar]
  47. J.T. Wu, K. Leung, et al., Estimating clinical severity of covid-19 from the transmission dynamics in Wuhan, China. Nat. Med. 26 (2020) 506–10. [CrossRef] [PubMed] [Google Scholar]
  48. P. Yubero, A.A. Lavin and J.F. Poyatos, Evidence for immunity to SARS-CoV-2 from epidemiological data series. Preprint MedRxiv (2020) doi:2020.07.22.20160028. [Google Scholar]
  49. S. Zhao, D. Gao, Z. Zhuang, M. Chong et al., Estimating the serial interval of the novel coronavirus disease (COVID-19): a statistical analysis using the public data in Hong Kong. To appear in: Front. Phys. (2020) [Google Scholar]
  50. J. Zhang et al., Evolving epidemiology and transmission dynamics of coronavirusdisease 2019 outside Hubei province, China: a descriptive and modelling study. The Lancet 20 (2020) 793–802. [Google Scholar]
  51. F. Zhou et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 395 (2020) 1054–1062. [CrossRef] [PubMed] [Google Scholar]
  52. N. Zhu et al., A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382 (2020) 727–733. [Google Scholar]
  53. L. Zou, F. Ruan et al., SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med. 382 (2020) 12. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.