Open Access
Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Article Number 58
Number of page(s) 14
DOI https://doi.org/10.1051/mmnp/2020024
Published online 26 November 2020
  1. D. Adhikari, C. Cao, J. Wu and X. Xu, Small global solutions to the damped two-dimensional Boussinesq equations. J. Differ. Equ. 256 (2014) 3594–3613. [CrossRef] [Google Scholar]
  2. A. Ali, B.-S. Juliussen and H. Kalisch, Approximate conservation laws for an integrable Boussinesq system. MMNP 12 (2017) 1–14. [Google Scholar]
  3. K. Allali, F. Bikany, A. Taik and V. Volpert, Influence of vibrations on convective instability of reaction fronts in liquids. MMNP 5 (2010) 35–41. [CrossRef] [EDP Sciences] [Google Scholar]
  4. E.A. Barnes, Necessary and sufficient optimality conditions for a class of distributed parameter control systems. SIAM J. Control 9 (1971) 62–82. [CrossRef] [Google Scholar]
  5. J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17 (1872) 55–108. [Google Scholar]
  6. W. Chen and A. Sarria, Damped infinite energy solutions of the 3D Euler and Boussinesq equations. J. Differ. Equ. 265 (2018) 3841–3857. [CrossRef] [Google Scholar]
  7. A. Esfahani and L.G. Farah, Local well-posedness for the sixth-order Boussinesq equation. J. Math. Anal. Appl. 385 (2012) 230–242. [CrossRef] [Google Scholar]
  8. J. Fan and T. Ozawa, Cauchy problem and vanishing dispersion limit for Schrödinger-improved Boussinesq equations. Nonlinear Anal. 485 (2020) 1–7. [Google Scholar]
  9. D.-A. Geba and E. Witz, Improved global well-posedness for defocusing sixth-order Boussinesq equations. Nonlinear Anal. 191 (2020) 1–16. [Google Scholar]
  10. G.W. Griffiths and W.E. Schiesser, Traveling Wave Analysis of Partial Differential Equations, Academic Press, Cambridge (2011). [Google Scholar]
  11. S. Guo and Y. Yang, High energy blow up for two-dimensional generalizedexponential-type Boussinesq equation. Nonlinear Anal. 197 (2020) 1–10. [Google Scholar]
  12. N.S. Koshlyakov, M.M. Smirnov and E.B. Gliner, Differential Equation of Mathematical Physics. Elsevier, North-Holland Amsterdam (1964). [Google Scholar]
  13. H.-C. Lee and Y. Choi, Analysis and approximation of linear feedback control problems for the Boussinesq equations. Comp. Math. Appl. 51 (2006) 829–848. [CrossRef] [Google Scholar]
  14. S. Li, Optimal controls of Boussinesq equations with state constraints. Nonlinear Anal. 60 (2005) 1485–1508. [CrossRef] [Google Scholar]
  15. X. Li, W.Sun, Y. Xing and C.-S. Chou, Energy conserving local discontinious Galerkin methods for the improved Boussinesq equation. J. Comp. Phys. 401 (2020) 1–25. [Google Scholar]
  16. H. Liu and H. Gao, Global well-posedness and long time decay of the 3D Boussinesq equations. Int. J. Sys. Sci. 263 (2017) 8649–8665. [Google Scholar]
  17. H. Liu and H. Xiao, Boundary feedback stabilization of Boussinesq equations. Acta Math. Sci. 38 (2018) 1881–1902. [CrossRef] [Google Scholar]
  18. G. Liu and W. Wang, Inviscid limit for the damped Boussinesq equation. J. Differ. Equ. 267 (2019) 5521–5542. [CrossRef] [Google Scholar]
  19. V.G. Makhankov and O.K. Pashaev, Nonlinear Evolution Equations and Dynamical Systems: Needs’90, Springer-Verlag, Berlin (1991). [CrossRef] [Google Scholar]
  20. M. Pedersen, Functional Analysis in Applied Mathematics and Engineering. CRC Press, Cleveland, (2018). [CrossRef] [Google Scholar]
  21. I. Sadek, Necessary and Sufficient Conditions for the Optimal Control of Distributed Parameter Systems Subject to Integral Constraints. J. Franklin Inst. 325 (1988) 565–583. [CrossRef] [Google Scholar]
  22. G. Schneider and C.W. Eugene, Kawahara dynamics in dispersive media. Physica D 152 (2001) 384–394. [CrossRef] [Google Scholar]
  23. V.B. Shakhmurov, Nonlocal problems for Boussinesq equations. Nonlinear Anal. 142 (2016) 134–151. [CrossRef] [Google Scholar]
  24. M.D. Todorov, Nonlinear Waves. Morgan-Claypool, San Rafael, California (2018). [Google Scholar]
  25. V.V. Varlamov, On the initial boundary value problem for the damped Boussinesq equation. Dis. Con. Dyn. Sys. 4 (1998) 431–444. [CrossRef] [Google Scholar]
  26. V.N. Vu, C. Lee and T.-H. Jung, Extended Boussinesq equations for waves in porous media. Coastal Eng. 139 (2018), 85–97. [CrossRef] [Google Scholar]
  27. G. Wang, Z. Sun, J. Gao and X. Ma, Numerical study of edge waves using extended Boussinesq equations. Water Sci. Eng. 10 (2017) 295–302. [CrossRef] [Google Scholar]
  28. A.M. Wazwaz, Gaussian solitary waves for the logarithmic Boussinesq equation and the logarithmic regularized Boussinesq equation. Ocean Eng. 94 (2015) 111–115. [CrossRef] [Google Scholar]
  29. Z. Yang, Longtime dynamics of the damped Boussinesq equation. J. Math. Anal. Appl. 399 (2013) 180–190. [CrossRef] [Google Scholar]
  30. E.C. Zachmaonoglou and D.W. Thoe, Intoduction to Partial Differential equations with applications. Dover Publication, New York (1986). [Google Scholar]
  31. H. Zhang, X. Jiang, M. Zhao and R. Zheng, Spectral method for solving the time fractional Boussinesq equation. Appl. Math. Lett. 85 (2018) 164–170. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.