Math. Model. Nat. Phenom.
Volume 16, 2021
Fluid-structure interaction
Article Number 20
Number of page(s) 19
Published online 25 March 2021
  1. G. Ariel, H. Nguyen and R. Tsai, θ-parareal schemes. Preprint (2017). [Google Scholar]
  2. E. Aubanel, Scheduling of tasks in the parareal algorithm. Parallel Comput. 37 (2011) 172–182. [Google Scholar]
  3. E. Aulisa, S. Bna and G. Bornia, A monolithic ale Newton-Krylov solver with multigrid-Richardson-Schwarz preconditioning for incompressible fluid–structure interaction. Comput. Fluids 174 (2018) 213–228. [Google Scholar]
  4. G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic hyperbolic fluid–structure interactive system. Georgian Math. J. 15 (2008) 402–437. [Google Scholar]
  5. G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid–structure interaction. Discrete Contin. Dyn. Syst. Ser. S 2 (2009) 417–447. [Google Scholar]
  6. G. Avalos and R. Triggiani, Fluid–structure interaction with and without internal dissipation of the structure: a contrast study in stability. Evol. Equ. Control Theory 2 (2013) 563–598. [Google Scholar]
  7. A.-M. Baudron, J.-J. Lautard, Y. Maday, M. Riahi and J. Salomon, Parareal in time 3d numerical solver for the LWR benchmark neutron diffusion transient model. J. Comput. Phys. 279 (2014) 67–79. [Google Scholar]
  8. R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001) 173–199. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. Becker, M. Braack, D. Meidner, T. Richter and B. Vexler, The finite element toolkit Gascoigne. Available from: (2020). [Google Scholar]
  10. M. Besier and W. Wollner, On the pressure approximation in nonstationary incompressible flow simulations on dynamically varying spatial meshes. Int. J. Numer. Math. Fluids. 69 (2012) 1054–1064. [Google Scholar]
  11. A. Blouza, L. Boudin and S.M. Kaber, Parallel in time algorithms with reduction methods for solving chemical kinetics. Commun. Appl. Math. Comput. Sci. 5 (2011) 241–263. [Google Scholar]
  12. P. Causin, J.F. Gereau and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194 (2005) 4506–4527. [Google Scholar]
  13. R. Croce, D. Ruprecht and R. Krause, Parallel-in-space-and-time simulation of the three-dimensional, unsteady Navier-Stokes equations for incompressible flow. In Modeling, Simulation and Optimization of Complex Processes-HPSC 2012. Springer (2014) 13–23. [Google Scholar]
  14. J. Donea, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid–structure interactions. Comput. Methods Appl. Mech. Eng. 33 (1982) 689–723. [Google Scholar]
  15. L. Failer and T. Richter, A Newton multigrid framework for optimal control of fluid–structure interactions. To appear in: Optim. Eng. (2020). [Google Scholar]
  16. L. Failer and T. Richter, A parallel Newton multigrid framework for monolithic fluid–structure interactions. J. Sci. Comput. 82 (2020) 28. [Google Scholar]
  17. M.A. Fernández and J.-F. Gerbeau, Algorithms for fluid–structure interaction problems. In Cardiovascular Mathematics: Modelingand simulation of the circulatory system, volume 1, edited by L. Formaggia, A. Quarteroni, and A. Veneziani. MS & A. Springer (2009) 307–346. [Google Scholar]
  18. P.F. Fischer, F. Hecht and Y. Maday, A parareal in time semi-implicit approximation of the Navier-stokes equations. In Domain decomposition methods in science and engineering. Springer (2005) 433–440. [Google Scholar]
  19. S. Frei and T. Richter, A locally modified parametric finite element method for interface problems. SIAM J. Numer. Anal. 52 (2014) 2315–2334. [Google Scholar]
  20. M.J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29 (2007) 556–578.. [Google Scholar]
  21. M.W. Gee, U. Küttler and W.A. Wall, Truly monolithic algebraic multigrid for fluid–structure interaction. Int. J. Numer. Meth. Eng. 85 (2010) 987–1016. [Google Scholar]
  22. D. Hartmann, C. Lessig, N. Margenberg and T. Richter, A neural network multigrid solver for the Navier-stokes equations. Preprint (2020). [Google Scholar]
  23. T. Haut and B. Wingate, An asymptotic parallel-in-time method for highly oscillatory PDEs. SIAM J. Sci. Comput. 36 (2014) A693–A713. [Google Scholar]
  24. M. Heil, A.L. Hazel and J. Boyle, Solvers for large-displacement fluid–structure interaction problems: Segregated vs. monolithic approaches. Comput. Mech. 43 (2008) 91–101. [Google Scholar]
  25. J.G. Heywood, R. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Math. Fluids. 22 (1992) 325–352. [Google Scholar]
  26. C.W. Hirt, A.A. Amsden and J.L. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comp. Phys. 14 (1974) 227–469. [Google Scholar]
  27. J. Hron and S. Turek, A monolithic FEM/Multigrid solver for an ALE formulation of fluid–structure interaction with applications in biomechanics. In Fluid-structure Interaction: Modeling, Simulation, Optimization, edited by H.-J. Bungartz and M. Schäfer. Lecture Notes in Computational Science and Engineering. Springer (2006) 146–170. [Google Scholar]
  28. J. Hron and S. Turek, Proposal for numerical benchmarking of fluid–structure interaction between an elastic object and laminar incompressible flow. In Fluid-structure Interaction: Modeling, Simulation, Optimization, edited by H.-J. Bungartz and M. Schäfer. Lecture Notes in Computational Science and Engineering. Springer (2006) 371–385. [Google Scholar]
  29. T.J.R. Hughes, W.K. Liu and T.K. Zimmermann, Lagrangian-Eulerian finite element formulations for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29 (1981) 329–349. [Google Scholar]
  30. A. Kreienbuehl, A. Naegel, D. Ruprecht, R. Speck, G. Wittum and R. Krause, Numerical simulation of skin transport using parareal. Comput. Visual. Sci. 17 (2015) 99–108. [Google Scholar]
  31. U. Langer and H. Yang, Recent development of robust monolithic fluid–structure interaction solvers. In fluid–structure Interactions. Modeling, Adaptive Discretization and Solvers. Vol. 20 of Radon Series on Computational and Applied Mathematics. de Gruyter (2017). [Google Scholar]
  32. M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562–580. [Google Scholar]
  33. J.-L. Lions, Y. Maday and G. Turinici, Résolution d’edp par un schéma en temps. C. R. Acad. Sci. Math. 332 (2001) 661–668. [Google Scholar]
  34. M. Luskin and R. Rannacher, On the smoothing propoerty of the Crank-Nicholson scheme. Appl. Anal. 14 (1982) 117–135. [Google Scholar]
  35. M. Molnar, Stabilisierte Finite Elemente für Strömungsprobleme auf bewegten Gebieten. Master’s thesis, Universität Heidelberg (2015). [Google Scholar]
  36. R. Rannacher, Finite element solution of diffusion problems with irregular data. Numer. Math. 43 (1984) 309–327. [Google Scholar]
  37. R. Rannacher, On the stabilization of the Crank-Nicolson scheme for long time calculations. Inpreparation (1986). [Google Scholar]
  38. T. Richter, A monolithic geometric multigrid solver for fluid–structure interactions in ALE formulation. Int. J. Numer. Meth. Eng. 104 (2015) 372–390. [Google Scholar]
  39. T. Richter, Fluid–structure Interactions. Models, Analysis and Finite Elements. Vol. 118 of Lecture notes in computational science and engineering. Springer (2017). [CrossRef] [Google Scholar]
  40. T. Richter and T. Wick, Finite elements for fluid–structure interaction in ALE and Fully Eulerian coordinates. Comput. Methods Appl. Mech. Eng. 199 (2010) 2633–2642. [Google Scholar]
  41. T. Richter and T. Wick, On time discretizations of fluid–structure interactions. In Multiple Shooting and Time Domain Decomposition Methods, edited by T. Carraro, M. Geiger, S. Körkel, and R. Rannacher. Vol. 9 of Contributions in Mathematical and Computational Science. Springer (2015) 377–400. [Google Scholar]
  42. T. Richter and S. Frei, Second order time-stepping for parabolic interface problems with moving interfaces. Model. Math. Anal. Numer. 51 (2017) 1539–1560. [Google Scholar]
  43. D. Ruprecht, Wave propagation characteristics of parareal. Comput. Visual. Sci. 19 (2018) 1–17. [Google Scholar]
  44. D. Samaddar, D.E. Newman and R. Sánchez, Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm. J. Comput. Phys. 229 (2010) 6558–6573. [Google Scholar]
  45. M. Soszynska and T. Richter, Adaptive time-step control for a monolithic multirate scheme coupling the heat and wave equation. Preprint (2020). [Google Scholar]
  46. J. Steiner, D. Ruprecht, R. Speck and R. Krause, Convergence of parareal for the Navier-Stokes equations depending on the Reynolds number. In Numerical Mathematics and Advanced Applications - ENUMATH 2013. Edited by Assyr Abdulle, Simone Deparis, Daniel Kressner, Fabio Nobile, and Marco Picasso. Springer International Publishing, Cham (2015) 195–202. [Google Scholar]
  47. J.M.F. Trindade and J.C.F. Pereira, Parallel-in-time simulation of the unsteady Navier–stokes equations for incompressible flow. Int. J. Numer. Methods Fluids 45 (2004) 1123–1136. [Google Scholar]
  48. S. Turek, J. Hron, M. Madlik, M. Razzaq, H. Wobker and J. Acker, Numerical simulation and benchmarking of a monolithic multigrid solver for fluid–structure interaction problems with application to hemodynamics. Technical report, Fakultät für Mathematik, TU Dortmund. Ergebnisberichte des Instituts für Angewandte Mathematik, Num. 403 (2010). [Google Scholar]
  49. S. Turek, L. Rivkind, J. Hron and R. Glowinski, Numerical study of a modified time–stepping theta–scheme for incompressible flow simulations. J. Sci. Comput. 28 (2006) 533–547. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.