Math. Model. Nat. Phenom.
Volume 16, 2021
Nonlocal and delay equations
Article Number 21
Number of page(s) 18
Published online 09 April 2021
  1. N.V. Azbelev, V.P. Maksimov and L.F. Rakhmatullina, Introduction to theory of functional-differential equations. Nauka, Moscow (1991) (in Russian). [Google Scholar]
  2. N.V. Azbelev and P.M. Simonov, Stability of differential equations with aftereffect. Stability and Control: Theory, Methods and Applications, 20. Taylor and Francis, London (2003). [Google Scholar]
  3. L. Berezansky and A. Domoshnitsky, On stability of the second order neutral differential equation. Appl. Math. Lett. 88 (2019) 90–95. [Google Scholar]
  4. T.A. Burton, Stability by fixed point theory for functional differential equations. Dover Publications, Mineola, New York (2006). [Google Scholar]
  5. B. Cahlon and D. Schmidt, Stability criteria for second-order delay differential equations with mixed coefficients. J. Comput. Appl. Math. 170 (2004) 79–102. [Google Scholar]
  6. A. Domoshnitsky, Nonoscillation, maximum principles and exponential stability of second order delay differential equations without damping term. J. Inequal. Appl. 2014 (2014) 361. [Google Scholar]
  7. A. Domoshnitsky, Unboundedness of solutions and instability of differential equations of the second order with delayed argument. Differ. Integr. Equ. 14 (2001) 559–576. [Google Scholar]
  8. Z. Došla and I.T. Kiguradze, On boundedness and stability of solutions of second order linear differential equations with advanced arguments. Adv. Math. Sci. Appl. Gakkotosho, Tokyo 9 (1999) 1–24. [Google Scholar]
  9. L.N. Erbe, Q. Kong and B.G. Zhang, Oscillation theory for functional differential equations. Dekker, New York/Basel (1995). [Google Scholar]
  10. T. Erneux, Applied delay differential equations. Springer Science + Business Media (2009). [Google Scholar]
  11. V.N. Fomin, A.L. Fradkov and V.A. Yakubovich, Adaptive control of dynamical objects. Moscow: Nauka (1981). [Google Scholar]
  12. K. Gopalasamy, Stability and oscillation in delay differential equation of population dynamics. Kluwer Academic publishers, Dordrecht, Boston, London (1992). [Google Scholar]
  13. I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations. Clarendon, Oxford (1991). [Google Scholar]
  14. T. Insperger, J.G. Milton and G. Stepan, Acceleration feedback improves balancing against reflex delay. J. R. Soc. Interface 10 (2013) 20120763. [PubMed] [Google Scholar]
  15. D.V. Izjumova, About boundedness and stability of solutions of nonlinear functional-differential equations of the second order. Proc. Georg. Acad. Sci. V. 100 (1980) 285–288 (in Russian). [Google Scholar]
  16. V. Kolmanovskii and A. Myshkis, Introduction to the theory and applications of functional differential equations. Kluwer Academic Publisher, Dordrecht/Boston/London (1999). [Google Scholar]
  17. I.D. Loram and M. Lakie, Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability. J. Physiol. 545 (2002) 1041–1053. [PubMed] [Google Scholar]
  18. N. Minorski, Nonlinear oscillations. Van Nostrand, New York (1962). [Google Scholar]
  19. A.D. Myshkis, Linear differential equations with delayed argument. Moscow, Nauka, 1972, 352 p. (in Russian). [Google Scholar]
  20. M. Pinto, Asymptotic solutions for second order delay differential equations. Nonlin. Anal. : TMA 28 (1999) 1729–1740. [Google Scholar]
  21. A.V. Shatyrko and D. Ya Khusainov Absolute interval stability of indirect regulating systems of neutral type. J. Autom. Inf. Sci. 42 (2010) 43–54. [Google Scholar]
  22. A.H. Vette, K. Masani, K. Nakazawa and M.R. Popovic, Neural-mechanical feedback control scheme generates physiological ankle torque fluctuation during quiet stance. IEEE Trans. Neural. Syst. Rehabil. Eng. 18 (2010) 86–95. [PubMed] [Google Scholar]
  23. L. Zhang, G. Stepan and T. Insperger, Saturation limits the contribution of acceleration feedback to balancing against reaction delay. J. R. Soc. Interface 2018 (2018) 20170771. [Google Scholar]
  24. L. Zhangand G. Stepan, Exact stability chart of an elastic beam subjected to delayed feedback. J. Sound Vib. 367 (2016) 219–232. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.