Math. Model. Nat. Phenom.
Volume 16, 2021
Fluid-structure interaction
Article Number 22
Number of page(s) 21
Published online 09 April 2021
  1. V.V. Chernousko, Motion of a Rigid Body with Cavities Containing a Viscous Fluid, NASA Technical Translations, Moscow (1972). [Google Scholar]
  2. F.L. Chernousko, L.D. Akulenko, and D.D. Leshchenko, Evolution of motions of a rigid body about its center of mass. Springer, Cham (2017). [Google Scholar]
  3. J.L. Daleckii and M.G. Krein, Stability of solutions of differential equations in Banach spaces. Vol. 43 of Translations of Mathematical Monographs. AMS, R.I. Providence (1974). [Google Scholar]
  4. K. Disser, G.P. Galdi, G. Mazzone and P. Zunino, Inertial motions of a rigid body with a cavity filled with a viscous liquid. Arch. Ration. Mech. Anal. 221 (2016) 487–526. [Google Scholar]
  5. G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, Second edition. Springer Monographs in Mathematics. Springer, New York (2011). [CrossRef] [Google Scholar]
  6. G.P. Galdi, Stability of permanent rotations and long-time behavior of inertial motions of a rigid body with an interior liquid-filled cavity. Ch. in Particles in flows. Advances in Mathematical Fluid Mechanics. Springer (2017) 217–253. [Google Scholar]
  7. G.P. Galdi and G. Mazzone, On the motion of a pendulum with a cavity Entirelyn filled with a viscous liquid. Ch in Recent progress in the theory of the Euler and Navier-Stokes Equations. London Mathematical Society Lecture Note Series: 430. Cambridge University Press (2016) 37–56. [Google Scholar]
  8. G.P. Galdi and G. Mazzone, Stability and long-time behavior of a pendulum with an interior cavity filled with a viscous liquid. Mathematical Analysis of Viscous Incompressible Fluid. RIMS Kôkyûroku Proceedings No. 2058. (2018) 90–107. [Google Scholar]
  9. G.P. Galdi, G. Mazzone and M. Mohebbi, On the motion of a liquid-filled rigid body subject to a time-periodic torque. Recent developments of mathematical fluid mechanics. In: Advances in Mathematical Fluid Mechanics. Springer Basel (2016) 233–255. [Google Scholar]
  10. G.P. Galdi, G. Mazzone and M. Mohebbi, On the motion of a liquid-filled heavy body around a fixed point. Quart. Appl. Math. 76 (2018) 113–145. [Google Scholar]
  11. I. Gohberg and S. Goldberg, Classes of linear operators, Vol. 1. Birkhäuser-Verlag, Basel-Boston-Berlin (1990). [CrossRef] [Google Scholar]
  12. D. Henry, Geometric theory of semilinear parabolic equations. In Vol. 840 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York (1981). [Google Scholar]
  13. T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, Berlin-New York (1966). [Google Scholar]
  14. N.D. Kopachevsky and S.G. Krein, Operator Approach to Linear Problems of Hydrodynamics, Vol. 2: Nonself–Adjoint Problems for Viscous Fluids. Birkhäuser Verlag, Basel-Boston-Berlin (2000). [Google Scholar]
  15. A.G.A. Kostyuchenko, A. Shkalikov and Y.M. Yu, On the stability of a top with a cavity filled with viscous fluid (Russian). Funktsional. Anal. i Prilozhen. 32 (1998) 36–55; English transl., Funct. Anal. Appl. 32 (1998) 100–113. [Google Scholar]
  16. A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems. In Vol. 16 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag, Basel (1995). [Google Scholar]
  17. G. Mazzone, A mathematical analysis of the motion of a rigid body with a cavity containing a newtonian fluid. Ph.D. thesis, Università del Salento (2012). [Google Scholar]
  18. G. Mazzone, On the dynamics of a rigid body with cavities completely filled by a viscous liquid. Ph.D. thesis, University of Pittsburgh (2016). [Google Scholar]
  19. G. Mazzone, J. Prüss and G. Simonett, On the motion of a fluid-filled rigid body with Navier boundary conditions. SIAM J. Math. Anal. 51 (2019) 1582–1606. [Google Scholar]
  20. G. Mazzone, J. Prüss and G. Simonett, A maximal regularity approach to the study of motion of a rigid body with a fluid-filled cavity. J. Math. Fluid Mech. 21 (2019) 44. [Google Scholar]
  21. N.N. Moiseyev and V.V. Rumyantsev, Dynamic stability of bodies containing fluid. Springer, New York (1968). [Google Scholar]
  22. L.A. Pars, A treatise on analytical dynamics. John Wiley & Sons, Inc., New York (1965). [Google Scholar]
  23. A. Pazy, Semigroups of linear operators and applications to partial differential equations. In Vol. 44 of Applied Mathematical Sciences. Springer–Verlag, New York (1983). [CrossRef] [Google Scholar]
  24. J. Prüss, G. Simonett and R. Zacher, On convergence of solutions to equilibria for quasilinear parabolic problems. J. Differ. Equ. 246 (2009) 3902–3931. [Google Scholar]
  25. V.V. Rumiantsev, On the stability of stationary motions of rigid bodies with cavities containing fluid. Prikl. Mat. Meh. 26 977–991 (Russian); translated as J. Appl. Math. Mech. 26 (1963) 1485–1505. [Google Scholar]
  26. E.P. Smirnova, Stabilization of free rotation of an asymmetric top with cavities completely filled with a liquid. Prikl. Mat. Meh. 38 (1974) 980–985. [Google Scholar]
  27. E.P. Smirnova, Motion of a high vuscous liquid in a rotating torus. Prikl. Mat. Meh. 39 (1975) 177–182. [Google Scholar]
  28. S.L. Sobolev, On a new problem of mathematical physics (Russian). Izv. Akad. Nauk SSSR. Ser. Mat. 18 (1954) 3–50. [Google Scholar]
  29. H. Sohr, The Navier-Stokes Equations, An Elementary Functional Analytic Approach. Birkhäuser Verlag, Basel (2001). [Google Scholar]
  30. A.E. Taylor, Introduction to functional analysis. John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London (1958). [Google Scholar]
  31. M. Yu Yurkin, On the stability of small oscillations of a rotating asymmetric top with fluid inside. Dokl. Akad. Nauk 362 (1998) 170–173. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.