Math. Model. Nat. Phenom.
Volume 16, 2021
Fluid-structure interaction
Article Number 23
Number of page(s) 28
Published online 21 April 2021
  1. M. Abkarian, M. Faivre and A. Viallat, Swinging of red blood cells under shear flow. Phys. Rev. Lett. 98 (2007) 188302. [PubMed] [Google Scholar]
  2. M. Abkarian and A. Viallat, fluid–structure Interactions in Low-Reynolds-Number Flows. On the importance of red blood cells deformability in blood flow. Royal Society of Chemistry (2016) 347–462. [Google Scholar]
  3. S.K. Ballas and N. Mohandas, Sickle red cell microrheology and sickle blood rheology. Microcirculation 11 (2004) 209–225. [CrossRef] [PubMed] [Google Scholar]
  4. M. Bitbol, Red blood cell orientation in orbit C=0. Biophys. J. 49 (1986) 1055–1068. [PubMed] [Google Scholar]
  5. F.P. Bretherton, The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14 (1962) 284–304. [Google Scholar]
  6. S. Chien, Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168 (1970) 977–979. [CrossRef] [PubMed] [Google Scholar]
  7. D. Cordasco and P. Bagchi, Orbital drift of capsules and red blood cells in shear flow. Phys. Fluids 25 (2013) 091902. [Google Scholar]
  8. D. Cordasco, Yazdani and P. Bagchi, Comparison of erythrocyte dynamics in shear flow under different stress-free configurations. Phys. Fluids 26 (2014) 041902. [CrossRef] [Google Scholar]
  9. W.R. Dodson III and P. Dimitrakopoulos, Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling. Biophys. J. 99 (2010) 2906–2916. [PubMed] [Google Scholar]
  10. J. Dupire, M. Socol and A. Viallat, Full dynamics of a red blood cell in shear flow. Proc. Natl. Acad. Sci. USA 109 (2012) 20808–20813. [Google Scholar]
  11. J. Dupire, M. Abkarian and A. Viallat, A simple model to understand the effect of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow. Soft Matter 11 (2015) 8372–8382. [PubMed] [Google Scholar]
  12. C.D. Eggleton and A.S. Popel, Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 10 (1998) 1834–1845. [Google Scholar]
  13. D. Eisenbud, Commutative algebra with a view toward algebraic geometry. In Vol. 150 of Graduate Texts in Mathematics. Springer-Verlag, Berlin and New York (1995). [CrossRef] [Google Scholar]
  14. T.M. Fischer, On the energy dissipation in a tank-treading human red blood cell. Biophys. J. 32 (1980) 863–868. [PubMed] [Google Scholar]
  15. T.M. Fischer, Shape memory of human red blood cells. Biophys. J. 86 (2004) 3304–3313. [PubMed] [Google Scholar]
  16. T.M. Fischer, M. Stöhr-Liesen and H. Schmid-Schönbein, The red cell as a fluid droplet: Tank tread-like motion of the human erythrocyte membrane in shear flow. Science 202 (1978) 894–896. [CrossRef] [PubMed] [Google Scholar]
  17. Y.C. Fung, Biomechanics – Mechanical properties of living tissues. Springer-Verlag, 2nd edition (1993). [Google Scholar]
  18. H.L. Goldsmith and J. Marlow, Flow behaviour of erythrocytes. I. Rotation and deformation in dilute suspensions. Proc. Royal Soc. London B 182 (1972) 351–384. [Google Scholar]
  19. G.B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Royal Soc. London A 102 (1922) 161–179. [Google Scholar]
  20. S.R. Keller and R. Skalak, Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120 (1982) 27–47. [CrossRef] [Google Scholar]
  21. L. Lanotte, J. Mauer, S. Mendez, D.A. Fedosov, J.-M. Fromental, V. Claveria, F. Nicoud, G. Gompper and M. Abkarian, Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. Proc. Natl. Acad. Sci. USA 113 (2016) 13289–13294. [Google Scholar]
  22. J. Mauer, S. Mendez, L. Lanotte, F. Nicoud, M. Abkarian, G. Gompper and D.A. Fedosov, Flow-induced transitions of red blood cell shapes under shear. Phys. Rev. Lett. 121 (2018) 118103. [CrossRef] [PubMed] [Google Scholar]
  23. S. Mendez and M. Abkarian, In-plane elasticity controls the full dynamics of red blood cells in shear flow. Phys. Rev. Fluids 3 (2018) 101101(R). [Google Scholar]
  24. S. Mendez and M. Abkarian, Dynamics of Blood Cell Suspensions in Microflows, Single Red Blood Cell Dynamics in Shear Flow andtheir Role in Hemorheology. CRC Press (2019). [Google Scholar]
  25. S. Mendez, E. Gibaud and F. Nicoud, An unstructured solver for simulations of deformable particles in flows at arbitrary Reynoldsnumbers. J. Comput. Phys. 256 (2014) 465–483. [Google Scholar]
  26. C. Minetti, V. Audemar, T. Podgorski and G. Coupier, Dynamics of a large population of red blood cells under shear flow. J. Fluid Mech. 864 (2019) 408–448. [Google Scholar]
  27. N. Mohandas and P.G. Gallagher, Red cell membrane: past, present, and future. Blood 112 (2008) 3939–3948. [CrossRef] [PubMed] [Google Scholar]
  28. Z. Peng, R.J. Asaro and Q. Zhu, Multiscale modelling of erythrocytes in Stokes flow. J. Fluid Mech. 686 (2011) 299–337. [Google Scholar]
  29. Z. Peng, A. Mashayekh and Q. Zhu, Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton. J. Fluid Mech. 742 (2014) 96–118. [Google Scholar]
  30. Z. Peng, S. Salehyar and Q. Zhu, Stability of the tank treading modes of erythrocytes and its dependence on cytoskeleton reference states. J. Fluid Mech. 771 (2015) 449–467. [Google Scholar]
  31. I.V. Pivkin, Z. Peng, G.E. Karniadakis, P. Buffet, M. Dao and S. Suresh, Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proc. Natl. Acad. Sci. USA 113 (2016) 7804–7809. [Google Scholar]
  32. A.S. Popel and P.C. Johnson, Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37 (2005) 43–69. [PubMed] [Google Scholar]
  33. H. Schmid-Schönbein and R. Wells, Fluid drop-like transition of erythrocytes under shear. Science 165 (1969) 288–291. [CrossRef] [PubMed] [Google Scholar]
  34. T.W. Secomb and R. Skalak, Surface flow of viscoelastic membranes in viscous fluids. Quart. J. Mech. Appl. Math. 35 (1982) 233–247. [Google Scholar]
  35. J. Sigüenza, S. Mendez and F. Nicoud, How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics? Biomech. Model. Mechanobiol. 16 (2017) 1645–1657. [PubMed] [Google Scholar]
  36. K. Sinha and M.D. Graham, Dynamics of a single red blood cell in simple shear flow. Phys. Rev. E 92 (2015) 042710. [Google Scholar]
  37. J.M. Skotheim and T.W. Secomb, Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys. Rev. Lett. 98 (2007) 078301. [PubMed] [Google Scholar]
  38. Y. Sui, Y.T. Chew, P. Roy, Y.P. Cheng and H.T. Low, Dynamic motion of red blood cells in simple shear flow. Phys. Fluids 20 (2008) 112106. [CrossRef] [Google Scholar]
  39. N. Takeishi, M.E. Rosti, Y. Imai, S. Wada and Brand, Haemorheology in dilute, semi-dilute and dense suspensions of red blood cells. J. Fluid Mech. 872 (2019) 818–848. [Google Scholar]
  40. R. Tran-Son-Tay, S.P. Sutera and P.R. Rao, Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion. Biophys. J. 46 (1984) 65–72. [PubMed] [Google Scholar]
  41. K.-I. Tsubota, S. Wada and H. Liu, Elastic behavior of a red blood cell with the membrane’s nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Biomech. Model. Mechanobiol. 13 (2014) 735–746. [PubMed] [Google Scholar]
  42. P.M. Vlahovska, Y.-N. Young, G. Danker and C. Misbah, Dynamics of a non-spherical microcapsule with incompressible interface in shear flow. J. Fluid Mech. 678 (2011) 221–247. [Google Scholar]
  43. J. von zur Gathen and J. Gerhard, Modern Computer Algebra. Cambridge University Press, New York, NY, USA, 3rd edition (2013). [Google Scholar]
  44. W. Yao, Z. Wen, Z. Yan, D. Sun, W. Ka, L. Xie and S. Chien, Low viscosity Ektacytometry and its validation tested by flow chamber. J. Biomech. 34 (2001) 1501–1509. [PubMed] [Google Scholar]
  45. A.Z.K. Yazdani, R.M. Kalluri and P. Bagchi, Tank-treading and tumbling frequencies of capsules and red blood cells. Phys. Rev. E 83 (2011) 046305. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.