Issue
Math. Model. Nat. Phenom.
Volume 16, 2021
Fluid-structure interaction
Article Number 8
Number of page(s) 35
DOI https://doi.org/10.1051/mmnp/2020051
Published online 03 March 2021
  1. M. Astorino, F. Chouly and M. Fernández, An added-mass free semi-implicit coupling scheme for fluid-structure interaction. Comptes Rendus Math. 347 (2009) 99–104. [Google Scholar]
  2. F. Baaijens, A fictitious domain/mortar element method for fluid-structure Interaction. Int. J. Numer. Methods Fluids 35 (2001) 743–761. [Google Scholar]
  3. S. Badia, F. Nobile and C. Vergara, Fluid–structure partitioned procedures based on Robin transmission conditions. J. Computat. Phys. 227 (2008) 7027–7051. [Google Scholar]
  4. S. Badia, F. Nobile and C. Vergara, Robin–Robin preconditioned Krylov methods for fluid–structure interaction problems. Comput. Methods Appl. Mech. Eng. 198 (2009) 2768–2784. [Google Scholar]
  5. H. Baek and G. Karniadakis, A convergence study of a new partitioned fluid–structure interaction algorithm based on fictitious mass and damping. J. Computat. Phys. 231 (2012) 629–652. [Google Scholar]
  6. J. Banks, W. Henshaw and D. Schwendeman, An analysis of a new stable partitioned algorithm for FSI problems. Part II: Incompressible flow and structural shells. J. Computat. Phys. 268 (2014) 399–416. [Google Scholar]
  7. V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, in Fluids and Waves, Vol. 440 of Contemporary Mathematics. American Mathematical Society, Providence, RI (2007) 55–82. [Google Scholar]
  8. V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid–structure interaction model. Indiana Univ. Math. J. 57 (2008) 1173–1207. [CrossRef] [Google Scholar]
  9. A. Bonito, R. Nochetto and M. Pauletti, Dynamics of biomembranes: effect of the bulk fluid. MMNP 6 (2011) 25–43. [CrossRef] [EDP Sciences] [Google Scholar]
  10. M. Bukac and S. Canic, Longitudinal displacement in viscoelastic arteries: a novel fluid–structure interaction computational model, and experimental validation. J. Math. Biosci. Eng. 10 (2003) 258–388. [Google Scholar]
  11. M. Bukac and B. Muha, Stability and convergence analysis of the extensions of the kinematically coupled scheme for the fluid–structure interaction. SIAM J. Numer. Anal. 54 (2016) 3032–3061. [Google Scholar]
  12. M. Bukač, S. Čanić, R. Glowinski, J. Tambača and A. Quaini, Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement. J. Computat. Phys. 235 (2012) 515–541. [Google Scholar]
  13. M. Bukac, S. Canic, R. Glowinski, J. Tambaca and A. Quaini, Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement. J. Computat. Phys. 235 (2013) 515–541. [Google Scholar]
  14. M. Bukac, S. Canic, R. Glowinski, B. Muha and A. Quaini, A modular, operator-splitting scheme for fluid–structure interaction problems with thick structures. Int. J. Numer. Methods Fluids 74 (2014) 577–604. [Google Scholar]
  15. M. Bukac, S. Canic and B. Muha, A partitioned scheme for fluid–composite structure interaction problems. J. Computat. Phys. 281 (2015) 493–517. [Google Scholar]
  16. M. Bukač, I. Yotov and P. Zunino, An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Partial Differ. Equ. 31 (2015) 1054–1100. [Google Scholar]
  17. M. Bukac and B. Muha, Stability and convergence analysis of the extensions of the kinematically coupled scheme for the fluid–structure interaction. SIAM J. Numer. Anal. 54 (2016) 3032–3061. [Google Scholar]
  18. E. Burman and M. Fernández, Stabilization of explicit coupling in fluid–structure interaction involving fluid incompressibility. Comput. Methods Appl. Mech. Eng. 198 (2009) 766–784. [Google Scholar]
  19. E. Burman and M. Fernández, An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes. Comput. Methods Appl. Mech. Eng. 279 (2014) 497–514. [Google Scholar]
  20. S. Canic, B. Muha, and M. Bukac, “Fluid-structure interaction in hemodynamics: Modeling, analysis, and numerical simulation, in Fluid–Structure Interaction and Biomedical Applications, Advances in Mathematical Fluid Mechanics. Birkhauser, Basel (2014). [CrossRef] [Google Scholar]
  21. P. Causin, J. Gerbeau and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Eng. 194 (2005) 4506–4527. [Google Scholar]
  22. A. Chambolle, B. Desjardins, M. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7 (2005) 368–404. [Google Scholar]
  23. N. Chemetov and Š. Nečasová, The motion of a rigid body in viscous fluid including collisions. A global solvability result. Nonlin. Anal. Real World Appl. 34 (2017) 416–445. [Google Scholar]
  24. A. Cheng and S. Shkoller, The interaction of the 3D Navier–Stokes equations with a moving nonlinear Koiter elastic shell. SIAM J. Math. Anal. 42 (2010) 1094–1155. [Google Scholar]
  25. A. Cheng, D. Coutand and S. Shkoller, Navier–Stokes equations interacting with a nonlinear elastic biofluid shell. SIAM J. Math. Anal. 39 (2007) 742–800. [Google Scholar]
  26. W. Chen, M. Gunzburger, F. Hua and X. Wang, A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system. SIAM J. Numer. Anal. 49 (2011) 1064–1084. [Google Scholar]
  27. P. Ciarlet, The Finite Element Method for Elliptic Problems, Vol. 4. North Holland (1978). [Google Scholar]
  28. C.M. Colciago, S. Deparis and A. Quarteroni, Comparisons between reduced order models and full 3D models for fluid–structure interaction problems in haemodynamics. J. Computat. Appl. Math. 265 (2014) 120–138. [Google Scholar]
  29. G. Cottet, E. Maitre and T. Milcent, Eulerian formulation and level set models for incompressible fluid–structure interaction. Math. Modell. Numer. Anal. 42 (2008) 471–492. [Google Scholar]
  30. D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid. Arch. Rational Mech. Anal. 176 (2005) 25–102. [Google Scholar]
  31. D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier–Stokes equations. Arch. Rational Mech. Anal. 179 (2006) 303–352. [Google Scholar]
  32. H. da Veiga On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech. 6 (2004) 21–52. [Google Scholar]
  33. J. Donea, Arbitrary Lagrangian–Eulerian finite element methods, in: Computational Methods for Transient Analysis. North-Holland, Amsterdam (1983). [Google Scholar]
  34. M. Doyle, S. Tavoularis and Y. Bougault, Application of Parallel Processing to the Simulation of Heart Valves. Springer-Verlag, Berlin, Heidelberg (2010). [Google Scholar]
  35. L. Fauci and R. Dillon, Biofluidmechanics of reproduction. Ann. Rev. Fluid Mech. 38 (2006) 371–394. [Google Scholar]
  36. C.A. Felippa, K. Park and C. Farhat, Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190 (2001) 3247–3270. [Google Scholar]
  37. M. Fernández, Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid. C. R. Math. Acad. Sci. Paris 349 (2011) 473–477. [Google Scholar]
  38. M. Fernández, Incremental displacement-correction schemes for incompressible fluid–structure interaction: stability and convergence analysis. Numer. Math. 123 (2013) 21–65. [Google Scholar]
  39. C. Figueroa, I. Vignon-Clementel, K. Jansen, T. Hughes and C. Taylor, A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195 (2006) 5685–5706. [Google Scholar]
  40. C. Förster, W. Wall and E. Ramm, Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196 (2007) 1278–1293. [Google Scholar]
  41. D. Gérard-Varet and M. Hillairet, Existence of weak solutions up to collision for viscous fluid–solid systems with slip. Commun. Pure Appl. Math. 67 (2014) 2022–2075. [Google Scholar]
  42. D. Gérard-Varet, M. Hillairet and C. Wang, The influence of boundary conditions on the contact problem in a 3D Navier–Stokes flow. J. Math. Pures Appl. Neuvième Série 103 (2015) 1–38. [Google Scholar]
  43. G. Gigante and C. Vergara, Analysis and optimization of the generalized Schwarz method for elliptic problems with application to fluid–structure Interaction. Numer. Math. 131 (2015) 369–404. [Google Scholar]
  44. R. Glowinski, Finite element methods for incompressible viscous flow, in Handbook of numerical Analysis, edited by P.G. Ciarlet and J.-L. Lions, . Vol. 9. North-Holland, Amsterdam (2003). [Google Scholar]
  45. C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40 (2008) 716–737. [Google Scholar]
  46. B. Griffith, R. Hornung, D. McQueen and C. Peskin, An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223 (2007) 10–49. [Google Scholar]
  47. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [Google Scholar]
  48. M. Hillairet, Lack of collision between solid bodies in a 2D incompressible viscous flow. Commun. Part. Differ. Equ. 32 (2007) 1345–1371. [Google Scholar]
  49. M. Hillairet and T. Takahashi, Collisions in three-dimensional fluid structure interaction problems. SIAM J. Math. Anal. 40 (2009) 2451–2477. [Google Scholar]
  50. T. Hughes, W. Liu and T. Zimmermann, Lagrangian-eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29 (1981) 329–349. [Google Scholar]
  51. M. Ignatova, I. Kukavica, I. Lasiecka and A. Tuffaha, On well-posedness for a free boundary fluid-structure model. J. Math. Phys. 5 (2012) 115624. [Google Scholar]
  52. M. Krafczyk, J. Tolke, E. Rank and M. Schulz, Two-dimensional simulation of fluid–structure interaction using lattice–Boltzmann methods. Comput. Struct. 79 (2001) 2031–2037. [Google Scholar]
  53. I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions for a fluid structure interaction system. Adv. Differ. Equ. 15 (2010) 231–254. [Google Scholar]
  54. U. Kuttler and W. Wall, Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computat. Mech. 43 (2008) 61–72. [Google Scholar]
  55. J. Lequeurre, Existence of strong solutions for a system coupling the Navier–Stokes equations and a damped wave equation. J. Math. Fluid Mech. 15 (2013) 249–271. [Google Scholar]
  56. M. Lukáčová-Medvid’ová, G. Rusnáková and A. Hundertmark-Zaušková, Kinematic splitting algorithm for fluid–structure interaction in hemodynamics. Comput. Methods Appl. Mech. Eng. 265 (2013) 83–106. [Google Scholar]
  57. A. Mikelić, Rough boundaries and wall laws, in Vol. 5. Qualitative Properties of Solutions to Partial Differential Equations, edited by P.K. Feireisl and J. Malek. Lecture Notes of Nečas Center for Mathematical Modeling (2009) 103–134. [Google Scholar]
  58. A. Mikelić, V. Nečasová and M. Neuss-Radu, Effective slip law for general viscous flows over an oscillating surface. Math. Methods Appl. Sci. 36 (2013) 2086–2100. [Google Scholar]
  59. B. Muhaand S. Canić, Existence of a weak solution to a nonlinear fluid–structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Rational Mech. Anal. (2003) 1–50. [Google Scholar]
  60. B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid–structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Rational Mech. Anal. 207 (2013) 919–968. [Google Scholar]
  61. B. Muhaand S. Canic, A nonlinear, 3D fluid–structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof. Commun. Inform. Syst. 13 (2013) 357–397. [Google Scholar]
  62. B. Muha and S. Čanić, Existence of a solution to a fluid–multi-layered-structure interaction problem. J. Differ. Equ. 256 (2014) 658–706. [Google Scholar]
  63. B. Muha and S. Čanić, Existence of a weak solution to a fluid–structure interaction problem with the Navier slip boundary condition, J. Differ. Equ. 260 (2016) 8550–8589. [Google Scholar]
  64. B. Muha and Z. Tutek, Note on evolutionary free piston problem for Stokes equations with slip boundary conditions. Commun. Pure Appl. Anal. 13 (2014) 1629–1639. [Google Scholar]
  65. J. Neustupa and P. Penel, A weak solvability of the Navier–Stokes equation with Navier’s boundary condition around a ball striking the wall, in Advances in Mathematical Fluid Mechanics. Springer, Berlin (2010) 385–407. [Google Scholar]
  66. F. Nobile and C. Vergara, Partitioned algorithms for fluid–structure interaction problems in haemodynamics. Milan J. Math. 80 (2012) 443–467. [Google Scholar]
  67. O. Oyekole, C. Trenchea and M. Bukač, A second-order in time approximation of fluid–structure interaction problem. SIAM J. Numer. Anal. 56 (2018) 590–613. [Google Scholar]
  68. K. Park, C. Felippa and J. DeRuntz, Stabilization of staggered solution procedures for fluid-structure interaction analysis. Computat. Methods Fluid-Struct. Interact. Probl. 26 (1977) 51. [Google Scholar]
  69. C. Peskin, Numerical analysis of blood flow in the heart. J. Computat. Phys. 25 (1977) 220–252. [Google Scholar]
  70. S. Piperno and C. Farhat, Partitioned procedures for the transient solution of coupled aeroelastic problems. Part II. Energy transfer analysis and three-dimensional applications. Comput. Methods Appl. Mech. Eng. 190 (2001) 3147–3170. [Google Scholar]
  71. G. Planas and F. Sueur, On the viscous incompressible fluid + rigid body” system with Navier conditions. Ann. Inst. Henri Poincaré. Anal. Non Linéaire 31 (2014) 55–80. [Google Scholar]
  72. M. Potomkin, V. Gyrya, I. Aranson and L. Berlyand, Collision of microswimmers in viscous fluid. Phys. Rev. E 87 (2013) 053005. [Google Scholar]
  73. A. Quarteroni, M. Tuveri and A. Veneziani, Computational vascular fluid dynamics: problems, models and methods. Survey article. Comput. Visual. Sci. 2 (2000) 163–197. [Google Scholar]
  74. J.-P. Raymond and M. Vanninathan, A fluid–structure model coupling the Navier–Stokes equations and the Lamé system. J. Math. Pures Appl. 102 (2012) 546–596. [Google Scholar]
  75. J. San Martín, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Rational Mech. Anal. 161 (2002) 113–147. [Google Scholar]
  76. C. Wang, Strong solutions for the fluid–solid systems in a 2-D domain. Asymptotic Anal. 89 (2004) 263–306. [Google Scholar]
  77. Y. Yu, H. Baek and G. Karniadakis, Generalized fictitious methods for fluid–structure interactions: analysis and simulations. J. Computat. Phys. 245 (2013) 317–346. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.