Math. Model. Nat. Phenom.
Volume 16, 2021
Fluid-structure interaction
Article Number 45
Number of page(s) 26
Published online 23 July 2021
  1. B. Cichocki, B.U. Felderhof, K. Hinsen, E. Wajnryb and J. Bławzdziewicz, Friction and mobility of many spheres in stokes flow. J. Chem. Phys. 100 (1994) 3780–3790. [Google Scholar]
  2. R.G. Cox, The motion of suspended particles almost in contact. Int. J. Multiphase Flow 1 (1974) 343–371. [Google Scholar]
  3. L. Durlofsky, J.F. Brady and G. Bossis, Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech. 180 (1987) 21–49. [Google Scholar]
  4. FreeFem webpage, Accessed: 2019-09-30. [Google Scholar]
  5. S. Gallier, E. Lemaire, L. Lobry and P. François, A fictitious domain approach for the simulation of dense suspensions. J. Comput. Phys. 256 (2014) 367–387. [Google Scholar]
  6. B.D. Goddard, R.D. Mills-Williams and J. Sun, The singular hydrodynamic interactions between two spheres in stokes flow. Phys. Fluids 32 (2020) 062001. [Google Scholar]
  7. M Hillairet and T Kelai, Justification of lubrication approximation: an application to fluid/solid interactions. Asymptotic Anal. 95 (2015) 187–241. [Google Scholar]
  8. A.J.C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271 (1994) 285–309. [Google Scholar]
  9. A.J.C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271 (1994) 311–339. [Google Scholar]
  10. B. Lambert, L. Weynans and M. Bergmann, Local lubrication model for spherical particles within incompressible Navier-Stokes flows. Phys. Rev. E 97 (2018) 033313. [Google Scholar]
  11. A. Lefebvre-Lepot, Numerical simulation of suspensions: lubrication correction, including fluid correction, in Equations aux dérivées partielles et leurs applications Actes du colloque Edp-Normandie. Caen 2017 (2017) 87–100. [Google Scholar]
  12. A. Lefebvre-Lepot, B. Merlet and T.N. Nguyen, An accurate method to include lubrication forces in numerical simulations of dense Stokesian suspensions. J. Fluid Mech. 769 (2015) 369–386. [Google Scholar]
  13. A.D. Maude, End effects in a falling-sphere viscometer. Br. J. Appl. Phys. 12 (1961) 293. [Google Scholar]
  14. N.A. Patankar, P. Singh, D.D. Joseph, R. Glowinski and T.-W. Pan, A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 26 (2000) 1509–1524. [Google Scholar]
  15. A.S. Sangani and G. Mo, Inclusion of lubrication forces in dynamic simulations. Phys. Fluids 6 (1994) 1653–1662. [Google Scholar]
  16. K. Yeo and M.R. Maxey, Simulation of concentrated suspensions using the force-coupling method. J. Comput. Phys. 229 (2010) 2401–2421. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.