Issue
Math. Model. Nat. Phenom.
Volume 16, 2021
Mathematical Models and Methods in Epidemiology
Article Number 44
Number of page(s) 32
DOI https://doi.org/10.1051/mmnp/2021034
Published online 28 June 2021
  1. R.M. Anderson and R.M. May, Infectious Diseases of Humans. Dynamics and Control. Oxford Science Publications (1991). [Google Scholar]
  2. J. Arino, Diseases in metapopulations, in Modeling and Dynamics of Infectious Diseases, edited by Z. Ma, Y. Zhou, and J. Wu. Volume 11 of Series in Contemporary Applied Mathematics. World Scientific (2009) 65–123. Also CDM Preprint Series report 2008-04. [Google Scholar]
  3. J. Arino and P. van den Driessche, Disease spread in metapopulations, in Nonlinear dynamics and evolution equations, edited by X.-O Zhao and X. Zou. Vol. 48 of Fields Institute Communications. AMS, Providence, R.I. (2006) 1–13. [Google Scholar]
  4. J. Arino, A. Ducrot and P. Zongo, A metapopulation model for malaria with transmission-blocking partial immunity in hosts. J. Math. Biol. 64 (2012) 423–448. [CrossRef] [PubMed] [Google Scholar]
  5. P. Auger, E. Kouokam, G. Sallet, M. Tchuente and B. Tsanou, The Ross-Macdonald model in a patchy environment. Math. Biosci. 216 (2008) 123–131. [CrossRef] [PubMed] [Google Scholar]
  6. A. Berman and R.J. Plemmons, Nonnegative matrices in the mathematical sciences. SIAM (1994). [CrossRef] [Google Scholar]
  7. D.M. Bichara, Effects of migration on vector-borne diseases with forward and backward stage progression. Discr. Continu. Dyn. Syst. Ser. B 24 (2019) 6297–6323. [Google Scholar]
  8. D.M. Bichara, Global analysis of multi-host and multi-vector epidemic models. J. Math. Anal. Appl. 475 (2019) 1532–1553. [CrossRef] [PubMed] [Google Scholar]
  9. D.M. Bichara and A. Iggidr, Multi-patch and multi-group epidemic models: a new framework. J. Math. Biol. 77 (2018) 107–134. [CrossRef] [PubMed] [Google Scholar]
  10. D.M. Bichara, Y. Kang, C. Castillo-Chavez, R. Horan and C. Perrings, Sis and sir epidemic models under virtual dispersal. Bull. Math. Biol. 77 (2015) 2004–2034. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  11. D.M. Bichara and C. Castillo-Chavez, Vector-borne diseases models with residence times – a Lagrangian perspective. Math. Biosci. 281 (2016) 128–138. [CrossRef] [PubMed] [Google Scholar]
  12. B. Bonzi, A. Fall, A. Iggidr and G. Sallet, Stability of differential susceptibility and infectivity epidemic models. J. Math. Biol. 62 (2011) 39–64. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. C. Cosner, J.C. Beier, R.S. Cantrell, D. Impoinvil, L. Kapitanski, M.D. Potts, A. Troyo and S. Ruan, The effects of human movement on the persistence of vector-borne diseases. J. Theor. Biol. 258 (2009) 550–560. [CrossRef] [PubMed] [Google Scholar]
  14. G. Cruz-Pacheco, L. Esteva and C. Vargas, Multi-species interactions in West Nile virus infection. J. Biol. Dyn. 6 (2012) 281–298. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  15. O. Diekmann, J.A.P. Heesterbeek and J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28 (1990) 365–382. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  16. P. Du and M.Y. Li, Impact of network connectivity on the synchronization and global dynamics of coupled systems of differential equations. Physica D 286 (2014) 32–42. [CrossRef] [Google Scholar]
  17. A. Fenton, D.G. Streicker, O.L. Petchey and A.B Pedersen, Are all hosts created equal? Partitioning host species contributions to parasite persistence in multihost communities. Am. Nat. 186 (2015) 610–622. [CrossRef] [PubMed] [Google Scholar]
  18. A.K. Githeko, J.M. Ayisi, P.K. Odada, F.K. Atieli, B.A. Ndenga, J.I. Githure and G. Yan, Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control. Malaria J. 5 (2006). [CrossRef] [Google Scholar]
  19. H. Guo, M.Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models. Can. Appl. Math. Quart. 14 (2006) 259–284. [Google Scholar]
  20. H. Guo, M.Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions. Proc. Am. Math. Soc. 136 (2008) 2793–2802. [CrossRef] [Google Scholar]
  21. I. Hanski, Metapopulation Ecology. Oxford University Press (1999). [Google Scholar]
  22. R.A. Horn and C.R. Johnson, Matrix analysis. Cambridge University Press (1985). [CrossRef] [Google Scholar]
  23. A. Iggidr, G. Sallet and B. Tsanou, Global stability analysis of a metapopulation SIS epidemic model. Math. Popul. Stud. 19 (2012) 115–129. [CrossRef] [Google Scholar]
  24. A. Iggidr, G. Sallet and M.O. Souza, On the dynamics of a class of multi-group models for vector-borne diseases. J. Math. Anal. Appl. 2 (2016) 723–743. [CrossRef] [Google Scholar]
  25. W.B. Karesh, A. Dobson, J.O. Lloyd-Smith, J. Lubroth, M.A. Dixon, M. Bennett, S. Aldrich, T. Harrington, P. Formenty, E.H. Loh and C.C. Machalaba, Ecology of zoonoses: natural and unnatural histories. The Lancet 380 (2012) 1936–1945. [CrossRef] [Google Scholar]
  26. W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics–I. 1927. Bull. Math. Biol. 53 (1991) 33–55. [Google Scholar]
  27. A. Lajmanovich and J.A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28 (1976) 221–236. [Google Scholar]
  28. D.J. Rodríguez and L. Torres-Sorando, Models of infectious diseases in spatially heterogeneous environments. Bull. Math. Biol. 63 (2001) 547–571. [CrossRef] [PubMed] [Google Scholar]
  29. N.W. Ruktanonchai, D.L. Smith and P. De Leenheer, Parasite sources and sinks in a patched Ross-MacDonald malaria model with human and mosquito movement: implications for control. Math. Biosci. 279 (2016) 90–101. [CrossRef] [PubMed] [Google Scholar]
  30. M. Salmani and P. van den Driessche, A model for disease transmission in a patchy environment. Discr. Continu. Dyn. Syst. B 6 (2006) 185–202. [Google Scholar]
  31. D.L. Smith, J. Dushoff and F. Ellis McKenzie, The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol. 2 (2004) 1957–1964. [CrossRef] [Google Scholar]
  32. H.L. Smith, Monotone dynamical systems. An introduction to the theory of competitive and cooperativ systems. AMS, Providence, R.I. (1995). [Google Scholar]
  33. P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 (2002) 29–48. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  34. P. van den Driessche, Y.-H Hsieh and L. Wang, Impact of travel between patches for spatial spread of disease. Bull. Math. Biol. 69 (2007) 1355–1375. [CrossRef] [PubMed] [Google Scholar]
  35. M. Vidyasagar, Decomposition techniques for large-scale systems with nonadditive interactions: stability and stabilizability. IEEE Trans. Autom. Control 25 (1980) 773–779. [CrossRef] [Google Scholar]
  36. J.P. Webster, A. Borlase and J.W. Rudge, Who acquires infection from whom and how? disentangling multi-host and multi-mode transmission dynamics in the ‘elimination’ era. Philos. Trans. Roy. Soc. B 372 (2017). [Google Scholar]
  37. World Bank, People, pathogens and our planet, volume 1: Towards a one health approach for controlling zoonotic diseases. World Bank, Agriculture and Rural Development Health, Nutrition and Population (2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.