Math. Model. Nat. Phenom.
Volume 16, 2021
Control of instabilities and patterns in extended systems
Article Number 43
Number of page(s) 22
Published online 28 June 2021
  1. P. Altimari, P.L. Maffettone, S. Crescitelli, L. Russo and E. Mansusi, Nonlinear dynamics of a VOC combustion loop reactor. AIChE J. 52 (2006) 2812–2822. [CrossRef] [Google Scholar]
  2. P. Altimari and E. Mancusi, Control of temperature wave trains in periodically forced networks of catalytic reactors for methanol synthesis. Chem. Eng. Proc.: Process Intensif . 63 (2013) 25–36. [CrossRef] [Google Scholar]
  3. P. Altimari and E. Mancusi, Control of rotating wave trains in a looped reactor. Ind. Eng. Chem. Res. 52 (2013) 12134–12145. [CrossRef] [Google Scholar]
  4. P. Altimari, E. Mancusi, L. Russo and S. Crescitelli, Temperature wave-trains of periodically forced networks of catalytic reactors. AIChE J. 58 (2012) 899–913. [CrossRef] [Google Scholar]
  5. P. Altimari, E. Mansusi and S. Crescitelli, Formation of thermal wave train in loop reactors: Stability limits and spatiotemporal structure for reversible reactions. Ind. Eng. Chem. Res. 51 (2012) 9609–9619. [CrossRef] [Google Scholar]
  6. A.A. Barresi, M. Vanni, M. Brinkmann and G. Baldi, Control of autothermal networks of nonstationary catalytic reactors. AIChE J. 45 (1999) 1597–602. [CrossRef] [Google Scholar]
  7. M. Brinkmann, A.A. Barresi, M. Vanni and G. Baldi, Unsteady state treatment of very lean waste gases in a network of catalytic burners. Cat. Today 47 (1999) 263277. [CrossRef] [Google Scholar]
  8. C.B. Broughton and C.G. Gerhold, Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets, US Patent 2 985 589 (1961). [Google Scholar]
  9. A. Burghardt, M. Berezowski and E.W. Jacobsen, Approximate characteristics of a moving temperature front in a fixed-bed catalytic reactor. Chem. Eng. Proc. 38 (1999) 19–34. [CrossRef] [Google Scholar]
  10. D. Fissore, Robust control in presence of parametric uncertainties: observer-based feedback controller design. Chem. Eng. Sci. 63 (2008) 1890–1900. [CrossRef] [Google Scholar]
  11. D. Fissore and A.A. Barresi, Comparison between the reverse-flow reactor and a network of reactors for the oxidation of lean VOC mixtures. Chem. Eng. Tech. 25 (2002 ) 421–426. [CrossRef] [Google Scholar]
  12. D. Fissore, A.A. Barresi and C.C. Botar-Jid, NOx removal in forced unsteady-state chromatographic reactors. Chem. Eng. Sci. 61 (2006) 3409–3414. [CrossRef] [Google Scholar]
  13. D. Fissore, R. Pisano and A.A. Barresi, Observer design for the selective catalytic reduction of NOx in a loop reactor. Chem. Eng. J. 128 (2007) 181–189. [CrossRef] [Google Scholar]
  14. D.A. Frank-Kamenetski, Diffusion and Heat Exchange in Chemical Kinetics. Princeton University Press, Princeton, NJ (1955). [CrossRef] [Google Scholar]
  15. E.J. Gatica, J. Puzhinski and V. Hlavacek, Reaction front propagation in nonadiabatic exothermic reaction flow systems. AIChE J. 33 (1997) 819–833. [CrossRef] [Google Scholar]
  16. T.N. Haynes and H.S. Caram, The simulated moving bed chemical reactor. Chem. Eng. Sci. 49 (1994) 5465–5472. [CrossRef] [Google Scholar]
  17. M.A.G. Hevia, D. Fissore, S. Ordóñez, F.V. Díez and A.A. Barresi, Combustion of medium concentration CH4-air mixtures in non-stationary reactors. Chem. Eng. J. 131 (2007) 343–349. [CrossRef] [Google Scholar]
  18. O.V. Kiselev, Theoretical Study of the Phenomena of Heat Waves Movement in Catalytic Bed. (in Russian). Russian Academy of Sciences, Institute of Catalysis (1993). [Google Scholar]
  19. G. Kolios, J. Frauhammer and G. Eigenberger, Autothermal fixed-bed reactors concepts. Chem. Eng. Sci. 55 (2000) 5945–5967. [CrossRef] [Google Scholar]
  20. G. Lauschke and E.D. Gilles, Circulation reaction zones in a packed-bed loop reactors. Chem. Eng. Sci. 49 (1994) 5359–5375. [CrossRef] [Google Scholar]
  21. A.Y. Madai, O. Nekhamkina and M. Sheintuch, What is the leanest stream to sustain a nonadiabatic loop reactor: analysis and methane combustion experiments. AIChE J. 63 (2017) 2030–2042. [CrossRef] [Google Scholar]
  22. A.Y. Madai and M. Sheintuch, Demonstration of loop reactor operation. AIChE J. 54 (2008) 2413–2422. [CrossRef] [Google Scholar]
  23. A.Y. Madai and M. Sheintuch, Optimal design and control of nonadiabatic loop reactors. Chem. Eng. Sci. 65 (2010) 107–113. [CrossRef] [Google Scholar]
  24. E. Mancusi, L. Russo, P. Altimari, P.L. Maffettone and S. Crescitelli, Effect of the switch strategy on the stability of reactor networks. Ind. Eng. Chem. Res. 46 (2007) 6510–6521. [CrossRef] [Google Scholar]
  25. E. Mancusi, P. Altimari, P. L. Maffettone, S. Crescitelli and L. Russo, Temperature and conversion patterns in a network of catalytic reactors for methanol synthesis with different switch strategies. CES 65 (2010) 4579–4590. [CrossRef] [Google Scholar]
  26. P. Marin, D. Fissore, A.A. Barresi and S. Ordonez, Simulation of an industrial-scale process for the SCR of NOx based on the loop reactor concept. Chem. Eng. Proc. 48 (2009) 311–320. [CrossRef] [Google Scholar]
  27. Y.S. Matros, Catalytic Process Under Unsteady-State Conditions. Elsevier, Amsterdam (1989). [Google Scholar]
  28. Y.S. Matros, G.A. Bunimovich, V.O. Strots and E.A. Mirosh, Reversed flow converter for emission control after automotive engines. Chem. Eng. Sci. 54 (1999) 2889–2898. [CrossRef] [Google Scholar]
  29. O. Nekhamkina, A.Y. Madai, and M. Sheintuch, Front separation and ’locking’ during hydrocarbons co-combustion in a loop reactor. Chem. Eng. J. 323 (2017) 618–632. [CrossRef] [Google Scholar]
  30. O.A. Nekhamkina, A.A. Nepomnyashchy, B.Y. Rubinstein and M. Sheintuch, Nonlinear analysis of stationary patterns in convection-reaction-diffusion systems. Phys. Rev. E 61 (2000) 2436–2444. [CrossRef] [Google Scholar]
  31. O. Nekhamkina and M. Sheintuch, Structure of operation domains of loop reactors. AIChE J. 54 (2008) 1292–1302. [CrossRef] [Google Scholar]
  32. O. Nekhamkina and M. Sheintuch, Approximate design of loop reactors. Chem. Eng. Sci. 63 (2008) 4924–4934. [CrossRef] [Google Scholar]
  33. O. Nekhamkina and M. Sheintuch, Cross-flow reactor design for Fischer Tropsch synthesis. Chem. Eng. J. 372 (2019) 277–293. [CrossRef] [Google Scholar]
  34. L. Russo, P. Altimari, E. Mancusi, P.L. Maffettone and S. Crescitelli, Complex dynamics and spatiotemporal patterns in a network of three distributed chemical reactors with periodical feed switching. Chaos Solit. Fract. 3 (2006) 682706. [Google Scholar]
  35. R. Sheinman and M. Sheintuch, Loop reactor design and control for reversible exothermic reactions. Ind. Eng. Chem. Res. 48 (2009) 5185–5192. [CrossRef] [Google Scholar]
  36. M. Sheintuch and O. Nekhamkina, Comparison of flow-reversal, internal-recirculation and loop reactors. Chem. Eng. J. 59 (2004) 4065–4072. [CrossRef] [Google Scholar]
  37. M. Sheintuch and O. Nekhamkina, The asymptotes of loop reactors. AIChE J. 51 (2005) 224–234. [CrossRef] [Google Scholar]
  38. Y. Smagina and M. Sheintuch, Control of rotating pulses in a loop reactor. J. Process Control 19 (2009) 954–963. [CrossRef] [Google Scholar]
  39. Y. Smagina and M. Sheintuch, Control of traveling solutions in a loop-reactor. Math. Model. Nat. Phenom. 6 (2011) 209–225. [CrossRef] [Google Scholar]
  40. S.A. Velardi and A.A. Barresi, Methanol synthesis in a forced .unsteady state reactor network. Chem. Eng. Sci. 57 (2002) 2995–3004. [CrossRef] [Google Scholar]
  41. A.I. Volpert, V.I. Volpert and V.I. Volpert, Traveling wave solutions of parabolic systems. AMS (1994). [CrossRef] [Google Scholar]
  42. J. Wolff, A.G. Papathanasiou, I.G. Kevrekidis, H.H. Rotermund and G. Ertl, Spatiotemporal addressing of surface activity. Science 294 (2001) 134–137. [CrossRef] [PubMed] [Google Scholar]
  43. J. Wolff, A.G. Papathanasiou, H.H. Rotermund, G. Ertl, X. Li and I.G. Kevrekidis, Gentle dragging of reaction waves. Phys. Rev. Lett. 90 (2003) 018302. [CrossRef] [PubMed] [Google Scholar]
  44. V.Z. Yakhnin, A.B. Rovinsky and M. Menzinger, Differential flow instability of the exothermic standard reaction in a tubular cross-flow reactor. Chem. Eng. Sci. 49 (1994) 3257–3262. [CrossRef] [Google Scholar]
  45. V.M. Zahn, M. Mangold, M. Krasnyk and A. Seidel-Morgenstern, Theoretical analysis of heat integration in a periodically operated cascade of catalytic fixed-bed reactors. Chem. Eng. Tech. 32 (2009) 1326–1338. [CrossRef] [Google Scholar]
  46. V.M. Zahn, M. Mangold and A. Seidel-Morgenstern, Autothermal operation of an adiabatic simulated counter current reactor. Chem. Eng. Sci. 65 (2010) 458–465. [CrossRef] [Google Scholar]
  47. V.M. Zahn, C.U. Yi and A.S. Morgenstern, Analysis and demonstration of a control concept for a heat integrated simulated moving bed reactor. Chem. Eng. Sci. 66 (2011) 4901–12. [CrossRef] [Google Scholar]
  48. Y.B. Zeldovich, G.I. Barenblatt, V.B. Librovich and G.M. Makhviladze, Mathematical theory of combustion and explosions. US Springer (1985). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.