Math. Model. Nat. Phenom.
Volume 16, 2021
Mathematical Models and Methods in Epidemiology
Article Number 17
Number of page(s) 11
Published online 23 March 2021
  1. K. Argasinski and M. Broom, The nest site lottery: How selectively neutral density dependent growth suppression induces frequency dependent selection. Theor. Popul. Biol. 90 (2013) 82–90. [CrossRef] [PubMed] [Google Scholar]
  2. K. Argasinski and R. Rudnicki, Nest site lottery revisited: Towards a mechanistic model of population growth suppressed by the availability of nest sites. J. Theoret. Biol. 420 (2017) 279–289. [CrossRef] [Google Scholar]
  3. K. Argasinski and R. Rudnicki, From nest site lottery to host lottery: continuous model of growth suppression driven by the availability of nest sites for newborns or hosts for parasites and its impact on the selection of life history strategies. Theory Biosci. 130 (2020) 171–188. [Google Scholar]
  4. H. Barker, M. Broom and J. Rychtář, A game theoretic model of kleptoparasitism with strategic arrivals and departures of beetles at dung pats. J. Theor. Biol. 300 (2012) 292–298. [CrossRef] [PubMed] [Google Scholar]
  5. A. Bridge, R. Elwood and J. Dick, Imperfect assessment and limited information preclude optimal strategies in male–male fights in the orb-weaving spider Metellina mengei. Proc. Royal Soc. London Ser. B 267 (2000) 273–279. [CrossRef] [Google Scholar]
  6. M. Broom, M. Crowe, M. Fitzgerald and J. Rychtář, The stochastic modelling of kleptoparasitism using a Markov process. J. Theor. Biol. 264 (2010) 266–272. [CrossRef] [PubMed] [Google Scholar]
  7. M. Broom, M. Johanis and J. Rychtář, The effect of fight cost structure on fighting behaviour involving simultaneous decisions and variable investment levels. J. Math. Biol. 76 (2018) 457–482. [CrossRef] [PubMed] [Google Scholar]
  8. M. Broom, R. Luther, G. Ruxton and J. Rychtář, A game-theoretic model of kleptoparasitic behavior in polymorphic populations. J. Theor. Biol. 255 (2008) 81–91. [CrossRef] [PubMed] [Google Scholar]
  9. M. Broom and J. Rychtář, A game theoretical model of kleptoparasitism with incomplete information. J. Math. Biol. 59 (2009) 631–649. [CrossRef] [PubMed] [Google Scholar]
  10. M. Broom and J. Rychtář, A model of food stealing with asymmetric information. Ecological Complexity 26 (2016) 137–142. [CrossRef] [Google Scholar]
  11. M. Broom and J. Rychtář, Evolutionary games with sequential decisions and dollar auctions. Dyn. Games Appl. 8 (2018) 211–231. [Google Scholar]
  12. M. Broom, J. Rychtář and D. Sykes, The effect of information on payoff in kleptoparasitic interactions. In Topics from the 8th Annual UNCG Regional Mathematics and Statistics Conference. Springer (2013) 125–134. [CrossRef] [Google Scholar]
  13. M. Broom, J. Rychtář and D. Sykes, Kleptoparasitic interactions under asymmetric resource valuation. Math. Model. Natur. Phenomena 9 (2014) 138–147. [CrossRef] [Google Scholar]
  14. M. Broom and J. Rychtář, Game-theoretical models in biology. Chapman and Hall/ (2013). [Google Scholar]
  15. T. Caraco and L. Giraldea, Social foraging: producing and scrounging in a stochastic environment. J. Theor. Biol. 153 (1991) 559–583. [Google Scholar]
  16. G. Cowlishaw, Refuge use and predation risk in a desert baboon population. Animal Behav. 54 (1997) 241–253. [CrossRef] [Google Scholar]
  17. R. Cressman and V. Křivan, Bimatrix games that include interaction times alter the evolutionary outcome: the Owner–Intruder game. J. Theor. Biol. 460 (2019) 262–273. [CrossRef] [PubMed] [Google Scholar]
  18. J. Delhey, M. Carrete and M. Martinez, Diet and feeding behaviour of Olrog’s gull Larus atlanticus in Bahia Blanca, Argentina. Ardea 89 (2001) 319–329. [Google Scholar]
  19. F. Dubois and L. Giraldeau, Fighting for resources: the economics of defense and appropriation. Ecology 86 (2005) 3–11. [Google Scholar]
  20. F. Dubois, L. Giraldeau and J. Grant, Resource defense in a group-foraging context. Behav. Ecol. 14 (2003) 2–9. [Google Scholar]
  21. M. Enquist and O. Leimar, Evolution of fighting behaviour: the effect of variation in resource value. J. Theor. Biol. 127 (1987) 187–205. [Google Scholar]
  22. I. Eshel and E. Sansone, Owner-intruder conflict, Grafen effect and self-assessment. The Bourgeois principle re-examined. J. Theor. Biol. 177 (1995) 341–356. [Google Scholar]
  23. N. Galanter, D. Silva Jr J. Rowell and J. Rychtář, Resource competition amid overlapping territories: the territorial raider model applied to multi-group interactions. J. Theor. Biol. 412 (2017) 100–106. [CrossRef] [PubMed] [Google Scholar]
  24. J. Garay, R. Cressman, T. Móri and T. Varga, The ess and replicator equation in matrix games under time constraints. J. Math. Biol. 76 (2018) 1951–1973. [CrossRef] [PubMed] [Google Scholar]
  25. J. Garay, R. Cressman, F. Xu, M. Broom, V. Csiszár and T.F. Móri, When optimal foragers meet in a game theoretical conflict: a model of kleptoparasitism. J. Theor. Biol. 2020 (2020) 110306. [Google Scholar]
  26. J. Garay, V. Csiszár and T. Móri, Evolutionary stability for matrix games under time constraints. J. Theor. Biol. 415 (2017) 1–12. [CrossRef] [PubMed] [Google Scholar]
  27. M. Grimm and M. Klinge, Pike and some aspects of its dependence on vegetation. Pike: Biol. Exploitat. 1996 (1996) 125–156. [Google Scholar]
  28. A. Hansen, Fighting behavior in bald eagles: a test of game theory. Ecology 67 (1986) 787–797. [Google Scholar]
  29. M. Hinsch and J. Komdeur, What do territory owners defend against? Proc. Royal Soc. B: Biol. Sci. 284 (2017) 20162356. [CrossRef] [Google Scholar]
  30. E. Iyengar, Kleptoparasitic interactions throughout the animal kingdom and a re-evaluation, based on participant mobility, of the conditions promoting the evolution of kleptoparasitism. Biol. J. Linnean Soc. 93 (2008) 745–762. [CrossRef] [Google Scholar]
  31. E. Jakob, Contests over prey by group-living pholcids (Holocnemus pluchei). J. Arachnol. (1994) 39–45. [Google Scholar]
  32. R. Jeanne, Social biology of the neotropical wasp Mischocyttarus drewseni. Bull. Mus. Comp. Zool. Harvard Univ. 144 (1972) 63–150. [Google Scholar]
  33. J. Krebs, Territorial defence in the great tit (Parus major): do residents always win? Behav. Ecol. Sociobiol. 11 (1982) 185–194. [Google Scholar]
  34. H. Kruuk, The Spotted Hyena: A Study of Predation and Social Behavior. University of Chicago Press (1972). [Google Scholar]
  35. K. Lindström, The effect of resource holding potential, nest size and information about resource quality on the outcome of intruder-owner conflicts in the sand goby. Behav. Ecol. Sociobiol. 30 (1992) 53–58. [Google Scholar]
  36. C. Maher and D. Lott, Definitions of territoriality used in the study of variation in vertebrate spacing systems. Animal Behav. 49 (1995) 1581–1597. [CrossRef] [Google Scholar]
  37. J. Marden and J. Waage, Escalated damselfly territorial contests are energetic wars of attrition. Animal Behav. 39 (1990) 954–959. [CrossRef] [Google Scholar]
  38. M. Mesterton-Gibbons, J. Marden and L. Dugatkin, On wars of attrition without assessment. J. Theor. Biol. 181 (1996) 65–83. [Google Scholar]
  39. M. Mesterton-Gibbons and T. Sherratt, Bourgeois versus anti-Bourgeois: a model of infinite regress. Animal Behav. 89 (2014) 171–183. [CrossRef] [Google Scholar]
  40. G. Parker, Assessment strategy and the evolution of fighting behaviour. J. Theor. Biol. 47 (1974) 223–243. [CrossRef] [PubMed] [Google Scholar]
  41. R. Payne and M. Pagel, Escalation and time costs in displays of endurance. J. Theor. Biol. 183 (1996) 185–193. [Google Scholar]
  42. M. Polak, Large-size advantage and assessment of resource holding potential in male Polistes fuscatus (F.) (Hymenoptera: Vespidae). Animal Behav. 48 (1994) 1231–1234. [CrossRef] [Google Scholar]
  43. H. Reeve, Queen-queen conflicts in polygynous societies: mutual tolerance and reproductive skew. In L. Keller, editor, Queen number and sociality in insects. Oxford University Press (1993) 45–85. [Google Scholar]
  44. T. Sherratt and M. Mesterton-Gibbons, The evolution of respect for property. J. Evol. Biol. 28 (2015) 1185–1202. [Google Scholar]
  45. B. Sinervo and C. Lively, The rock-scissors-paper game and the evolution of alternative male strategies. Nature 380 (1996) 240–243. [Google Scholar]
  46. L. Spear, S. Howell, C. Oedekoven, D. Legay and J. Bried, Kleptoparasitism by brown skuas on albatrosses and giant-petrels in the Indian ocean. Auk 116 (1999) 545–548. [Google Scholar]
  47. W. Steele and P. Hockey, Factors influencing rate and success of intraspecific kleptoparasitism among kelp gulls (Larus dominicanus). The Auk 112 (1995) 847–859. [Google Scholar]
  48. D. Sykes and J. Rychtář, Optimal aggression in kleptoparasitic interactions. Involve 10 (2017) 735–747. [Google Scholar]
  49. P. Triplet, R. Stillman and J. Goss-Custard, Prey abundance and the strength of interference in a foraging shorebird. J. Animal Ecol. 68 (1999) 254–265. [CrossRef] [Google Scholar]
  50. G. Turner and F. Huntingford, A problem for game theory analysis: assessment and intention in male mouthbrooder contests. Animal Behav. 34 (1986) 961–970. [CrossRef] [Google Scholar]
  51. T. Varga, T. Móri and J. Garay, The ESS for evolutionary matrix games under time constraints and its relationship with the asymptotically stable rest point of the replicator dynamics. J. Math. Biol. 80 (2019) 743–774. [CrossRef] [PubMed] [Google Scholar]
  52. T. Varga, J. Garay, J. Rychtář and M. Broom, A temporal model of territorial defence with antagonistic interactions. Theor. Popul. Biol. 134 (2020) 15–35. [CrossRef] [PubMed] [Google Scholar]
  53. S. Vehrencamp, Optimal degree of skew in cooperative societies. Am Zool 23 (1983) 327–335. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.