Math. Model. Nat. Phenom.
Volume 16, 2021
Fractional Dynamics in Natural Phenomena
Article Number 18
Number of page(s) 21
Published online 23 March 2021
  1. K. Aissania, M. Benchohrab and J.J. Nieto, Controllability for impulsive fractional evolution inclusions with state-dependent delay. Adv. Theory Nonlinear Anal. Appl. 3 (2019) 18–34. [Google Scholar]
  2. N. Al-Salti, E. Karimov and K. Sadarangani, On a differential equation with Caputo–Fabrizio fractional derivative of order 1 < β ≤ 2 and application to mass-spring-damper system. Progr. Fract. Differ. Appl. 2 (2017) 257–263. [Google Scholar]
  3. B. Andrade and A. Viana, Abstract Volterra integrodifferential equations with applications to parabolic models with memory. Math. Ann. 369 (2017) 1131–1175. [Google Scholar]
  4. B. Andrade and A. Viana, Integrodifferential equations with applications to a plate equation with memory. Math. Nachr. 289 (2016) 2159–2172. [Google Scholar]
  5. D. Baleanu, S. Etemad and S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020 (2020) 64. [Google Scholar]
  6. D. Baleanu, S. Etemad, S. Pourrazi and S. Rezapour, On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Adv. Differ. Equ. 2019 (2019) 473. [Google Scholar]
  7. D. Baleanu, H. Mohammadi and S. Rezapour, Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative. Adv Differ Equ. 2020 (2020) 71. [Google Scholar]
  8. D. Baleanu, A. Mousalou and S. Rezapour, The extended fractional Caputo-Fabrizio derivative of order 0 ≤ σ < 1 on C[0,1] and the existence of solutions for two higher-order series-type differential equations. Adv. Differ. Equ. 2018 (2018) 255. [Google Scholar]
  9. D. Baleanu, A. Jajarmi, H. Mohammadi and S. Rezapour, A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos, Solitons Fractals 134 (2020) 109705. [Google Scholar]
  10. D. Baleanu, A Jajarmi, S.S. Sajjadi and J.H. Asad, The fractional features of a harmonic oscillator with position-dependent mass. Commun. Theor. Phys. 72 (2020) 055002. [Google Scholar]
  11. D. Baleanu, S. Rezapour and Z. Saberpour, On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation. Bound. Value Probl. 2019 (2019) 79. [Google Scholar]
  12. D. Baleanu, S. Rezapour and H. Mohammadi, Some existence results on nonlinear fractional differential equations. Philos. Trans. R.Soc. Lond. Ser. A Math. Phys. Eng. Sci. 371 (2013) 20120144. [Google Scholar]
  13. E.G. Bazhlekova, Subordination principle for fractional evolution equations. Fract. Calc. Appl. Anal. 3 (2000) 213–230. [Google Scholar]
  14. Y. Cao, J. Yin and C. Wang, Cauchy problems of semilinear pseudo-parabolic equations. J. Differ. Equ. 246 (2009) 4568–4590. [Google Scholar]
  15. M. Caputo and M. Fabrizio, applications of new time and spatial fractional derivatives with exponential kernels. Progr. Fract. Differ. Appl. 2 (2016) 1–11. [CrossRef] [Google Scholar]
  16. M. Caputo and M. Fabrizzio, A new definition of fractional derivative without singular Kernel. Prog. Fract. Differ. Appl. 1 (2015) 73–85. [Google Scholar]
  17. T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays. J. Differ. Equ.. 205 (2004) 271–297. [Google Scholar]
  18. T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003) 3181–3194. [Google Scholar]
  19. Y. Chen, H. Gao, M. Garrido–Atienza and B. Schmalfuß, Pathwise solutions of SPDEs driven by Hö lder-continuous integrators with exponent larger than 1/2 and random dynamical systems. Discr. Continu. Dyn. Syst. Series A. 34 (2014) 79–98. [Google Scholar]
  20. M. Conti, E. Marchini and V. Pata, Reaction-diffusion with memory in the minimal state framework. Trans. Amer. Math. Soc. 366 (2014) 4969–4986. [Google Scholar]
  21. M. Conti, E. Marchini and V. Pata, A well posedness result for nonlinear viscoelastic equations with memory. Nonlinear Anal. 94 (2014) 206–216. [Google Scholar]
  22. M. D’Abbicco, The influence of a nonlinear memory on the damped wave equation. Nonlinear Anal. 95 (2014) 130–145. [Google Scholar]
  23. J.E.L. Delgado, J.E.S. Perez, J.F.G. Aguilar and R.F.E. Jiménez, A new fractional-order mask for image edge detection based on Caputo–Fabrizio fractional-order derivative without singular kernel. Circuits Syst. Signal Process 39 (2020) 1419–1448. [Google Scholar]
  24. M. Fabrizio and S. Polidoro, asymptotic decay for some differential systems with fading memory. Appl. Anal. 81 (2002) 1245–1264. [Google Scholar]
  25. E. Franc and D. Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg–de Vries–Burgers equation. Math. Model. Anal. 21 (2016) 188–198. [Google Scholar]
  26. A. Jajarmi and D. Baleanu, A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems. Front. Phys. 8 (2020) 220. [Google Scholar]
  27. A. Jajarmi and D. Baleanu, On the fractional optimal control problems with a general derivative operator. Asian J. Control. 23 (2021) 1062–1071. [Google Scholar]
  28. T.H. Kaddoura and A. Hakema, Sufficient conditions of non global solution for fractional damped wave equations with non-linear memory. Adv. Theory Nonlinear Anal. Appl. 2 (2018) 224–237. [Google Scholar]
  29. H. Khan, J.F.G. Aguilar, T. Abdeljawad and A. Khan, Existence results and stability criteria for ABC-fuzzy-Volterra integro-differential equation. Fractals 28 (2020) 9 pp. [Google Scholar]
  30. A. Lunardi, on the linear heat equation with fading memory. SIAM J. Math. Anal. 21 (1990) 1213–1224. [CrossRef] [Google Scholar]
  31. E. Meerschaert, E. Nane and P. Vellaisamy, Fractional Cauchy problems on bounded domains. Ann. Probab. 37 (2009) 979–1007. [Google Scholar]
  32. F. Mohammadi, L. Moradi, D. Baleanu and A Jajarmi, A hybrid functions numerical scheme for fractional optimal control problems: application to non-analytic dynamical systems. J. Vib. Control 24 (2018) 5030–5043. [Google Scholar]
  33. D. Mozyrska, D.F.M. Torres and M. Wyrwas, Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales. Nonlinear Anal. Hybrid Syst. 32 (2019) 168–176. [Google Scholar]
  34. J.E. Muñoz Rivera and L.H. Fatori, Smoothing effect and propagations of singularities for viscoelastic plates. J. Math. Anal. Appl. 206 (1997) 397–427. [Google Scholar]
  35. A. Nabti, Life span of blowing-up solutions to the Cauchy problem for a time-space fractional diffusion equation. Comput. Math. Appl. 78 (2019) 1302–1316. [Google Scholar]
  36. S. Sajjadi, D. Baleanu, A. Jajarmi and H.M. Pirouz, A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos Solitons Fractals. 138 (2020) 109919. [Google Scholar]
  37. S. Samko and J.J. Trujillo, On the existence of blow up solutions for a class of fractional differential equations. Fract. Calc. Appl. Anal. 18 (2015) 281–283. [Google Scholar]
  38. N.H. Tuan, M. Hakimeh and S. Rezapour, A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos Solitons Fractals 140 (2020) 110107. [PubMed] [Google Scholar]
  39. N.H. Tuan and Z. Yong, Well-posedness of an initial value problem for fractional diffusion equation with Caputo-Fabrizio derivative. J. Comput. Appl. Math. 375 (2020) 112811. [Google Scholar]
  40. A. Viana, Local well-posedness for a Lotka-Volterra system in Besov spaces. Comput. Math. Appl. 69 (2015) 667–674. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.