Math. Model. Nat. Phenom.
Volume 16, 2021
Mathematical Models and Methods in Epidemiology
Article Number 28
Number of page(s) 25
Published online 29 April 2021
  1. F.B. Agusto, S. Bewick and W.F. Fagan, Mathematical model for Zika virus dynamics with sexual transmission route. Ecol. Complex. 29 (2017) 61–81. [Google Scholar]
  2. E. Bonyah and K.O. Okosun, Mathematical modeling of Zika virus. Asian Pacific J. Trop. Dis. 6 (2016) 673–679. [Google Scholar]
  3. L. Cai, X. Li, N. Tuncer, M. Martcheva and A.A. Lashari, Optimal control of a malaria model with asymptomatic class and superinfection. Math. Biosci. 288 (2017) 94–108. [PubMed] [Google Scholar]
  4. Canada reports 1st sexually transmitted Zika case, 9th country to report person-to-person transmission. April (2020). Available from: [Google Scholar]
  5. Centers for Disease Control and Prevention and others. CDC Concludes Zika Causes Microcephaly and Other Birth Defects: Centers for Disease Control and Prevention (CDC) (2016). [Google Scholar]
  6. T. Chouin-Carneiro, A. Vega-Rua, M. Vazeille, A. Yebakima, R. Girod, D. Goindin, M. Dupont-Rouzeyrol, R. Lourenco-de-Oliveira and A.B. Failloux, Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Neglect. Trop. Dis. 10 (2016) e0004543. [Google Scholar]
  7. C. Ding, N. Tao and Y. Zhu, A mathematical model of Zika virus and its optimal control. In 2016 35th Chinese control conference (CCC) (2016) 2642–2645. [Google Scholar]
  8. D.M. Dudley, C.M. Newman, J. Lalli, L.M. Stewart, M.R. Koenig, A.M. Weiler, M.R. Semler, G.L. Barry, K.R. Zarbock, M.S. Mohns and M.E. Breitbach, Infection via mosquito bite alters Zika virus tissue tropism and replication kinetics in rhesus macaques. Nat. Commun. 8 (2017) 1–11. [CrossRef] [PubMed] [Google Scholar]
  9. D.M. Dudley, M.T. Aliota, E.L. Mohr, A.M. Weiler, G. Lehrer-Brey, K.L. Weisgrau, M.S. Mohns, M.E. Breitbach, M.N. Rasheed, C.M. Newman and D.D. Gellerup, A rhesus macaque model of Asian-lineage Zika virus infection. Nat. Commun. 7 (2016) 1–9. [Google Scholar]
  10. B.D. Foy, K.C. Kobylinski, J.L.C. Foy, B.J. Blitvich, A.T. da Rosa, A.D. Haddow, R.S. Lanciotti and R.B. Tesh, Probable non–vector-borne transmission of Zika virus, Colorado, USA. Emerg. Infect. Dis. 17 (2011) 880. [Google Scholar]
  11. D. Gao, Y. Lou, D. He, T.C. Porco, Y. Kuang, G. Chowell and S. Ruan, Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis. Sci. Rep. 6 (2016) 28070. [PubMed] [Google Scholar]
  12. G. Grard, M. Caron, I.M. Mombo, D. Nkoghe, S.M. Ondo, D. Jiolle, D. Fontenille, C. Paupy and E.M. Leroy, Zika virus in Gabon (Central Africa)–2007: a new threat from Aedes albopictus? PLoS Neglect. Trop. Dis. 8 (2014) e2681. [Google Scholar]
  13. J. Hale, Asymptotic behavior of dissipative systems. AMS, Providence (1988). [Google Scholar]
  14. Health Effects and Risks. CDC, April (2020). Available from: [Google Scholar]
  15. A.J. Kucharski, S. Funk, R.M. Eggo, H.P. Mallet, W.J. Edmunds and E.J. Nilles, Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013–14 French Polynesia outbreak. PLoS Neglect. Trop. Dis. 10 (2016). [Google Scholar]
  16. P. Magal, Compact attractors for time-periodic age-structured population models. Electr. J. Differ. Equ. 2001 (2001) 1–35. [Google Scholar]
  17. P. Magal and S. Ruan, Theory and Applications of Abstract Semilinear Cauchy Problems. Springer (2018). [Google Scholar]
  18. P. Magal, C.C. McCluskey and G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, in Applicable Analysis 89 (2010) 1109–1140. [Google Scholar]
  19. R.W. Malone, J. Homan, M.V. Callahan, J. Glasspool-Malone, L. Damodaran, A.D.B. Schneider, R. Zimler, J. Talton, R.R. Cobb, I. Ruzic and J. Smith-Gagen, Zika virus: medical countermeasure development challenges. PLoS Neglect. Trop. Dis. 10 (2016). [Google Scholar]
  20. M. Martcheva and H.R. Thieme, Progression age enhanced backward bifurcation in an epidemic model with super-infection. J. Math. Biol. 46 (2003) 385–424. [PubMed] [Google Scholar]
  21. M. Martcheva, An introduction to mathematical epidemiology. Springer (2015) 61. [Google Scholar]
  22. M.Z. Mehrjardi, Is Zika virus an emerging TORCH agent? An invited commentary. Virology 8 (2017) 1178122X17708993. [Google Scholar]
  23. D. Musso, C. Roche, E. Robin, T. Nhan, A. Teissier and V.M. Cao-Lormeau, Potential sexual transmission of Zika virus. Emerg. Infect. Dis. 21 (2015) 359. [PubMed] [Google Scholar]
  24. F. Noorbakhsh, K. Abdolmohammadi, Y. Fatahi, H. Dalili, M. Rasoolinejad, F. Rezaei, M. Salehi-Vaziri, N.Z. Shafiei-Jandaghi, E.S. Gooshki, M. Zaim and M.H. Nicknam, Zika virus infection, basic and clinical aspects: A review article. Iran. J. Public Health 48 (2018) 20. [Google Scholar]
  25. A.R. Plourde and E.M. Bloch, Evan: a literature review of Zika virus. Emerg. Infect. Dis. 22 (2016) 1185. [PubMed] [Google Scholar]
  26. G.A. Poland, R.B. Kennedy, I.G. Ovsyannikova, R. Palacios, P.L. Ho and J. Kalil, Development of vaccines against Zika virus. Lancet Infect. Dis. 18 (2018) e211–e219. [PubMed] [Google Scholar]
  27. Z. Qiu, Q. Kong, X. Li and M. Martcheva, The vector–host epidemic model with multiple strains in a patchy environment. J. Math. Anal. Appl. 405 (2013) 12–36. [Google Scholar]
  28. M. Rahman, K. Bekele-Maxwell, L.L. Cates, H.T. Banks and N.K. Vaidya, Modeling Zika virus transmission dynamics: parameter estimates, disease characteristics, and prevention. Sci. Rep. 9 (2019) 1–13. [CrossRef] [PubMed] [Google Scholar]
  29. S.A. Rasmussen, D.J. Jamieson, M.A. Honein and L.R. Petersen, Zika virus and birth defects?reviewing the evidence for causality. N. Engl. J. Med. 374 (2016) 1981–1987. [PubMed] [Google Scholar]
  30. Sexual Transmission and Prevention, CDC, April (2020). Available from: [Google Scholar]
  31. H. Smith and H.R. Thieme, Dynamical Systems and Population Persistence. Vol. 118 of Graduate Studies in Mathematics. American Mathematical Society, Rhode Island (2011). [Google Scholar]
  32. H.R. Thieme, Mathematics in Population Biology. Princeton University Press (2003). [Google Scholar]
  33. H.R. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology. Math. Biosci. 166 (2000) 173–201. [PubMed] [Google Scholar]
  34. H.R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators. Differ. Integr. Equ. 3 (1990) 1035–1066. [Google Scholar]
  35. S. Towers, F. Brauer, C. Castillo-Chavez, A.K.I. Falconar, A. Mubayi and C.M.E. Romero-Vivasc, Estimate of the reproduction number ofthe 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission. Epidemics 17 (2016) 50–55. [PubMed] [Google Scholar]
  36. Treatment. CDC, April (2020). Available from: [Google Scholar]
  37. N. Tuncer, C. Mohanakumar, S. Swanson and M. Martcheva, Efficacy of control measures in the control of Ebola, Liberia 2014–2015. J. Biol. Dyn. 12 (2018) 913–937. [Google Scholar]
  38. N. Tuncer, M. Marctheva, B. LaBarre and S. Payoute, Structural and practical identifiability analysis of Zika epidemiological models. Bull. Math. Biol. 80 (2018) 2209–2241. [PubMed] [Google Scholar]
  39. J. Tumwiine, J.Y.T. Mugisha and L.S. Luboobi, A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity. Appl. Math. Comput. 189 (2007) 1953–1965. [Google Scholar]
  40. N. Tuncer, H. Gulbudak, V.L. Cannataro and M. Martcheva, Structural and practical identifiability issues of immuno-epidemiological vector–host models with application to rift valley fever. Bull. Math. Biol. 78 (2016) 1796–1827. [CrossRef] [Google Scholar]
  41. J.S. Welker and M. Martcheva, A novel multi-scale immuno-epidemiological model of visceral leishmaniasis in dogs. BIOMATH 8 (2019) 1901026. [Google Scholar]
  42. N. Wikan and D.R. Smith, Zika virus: history of a newly emerging arbovirus. Lancet Infect. Diseases 16 (2016) e119–e126. [Google Scholar]
  43. Y. Yang, S. Ruan and D. Xiao, Global stability of an age-structured virus dynamics model with Beddington-Deangels infection function. Math. Biosci. Eng. 12 (2015) 850–877. [Google Scholar]
  44. K. Yosida, Functional Analysis. Springer-Verlag (1968). [Google Scholar]
  45. Zika virus key facts. WHO. April (2020). Available from: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.