Issue
Math. Model. Nat. Phenom.
Volume 16, 2021
Control of instabilities and patterns in extended systems
Article Number 6
Number of page(s) 13
DOI https://doi.org/10.1051/mmnp/2020049
Published online 08 February 2021
  1. A. Ahlborn and U. Parlitz, Stabilizing Unstable Steady States Using Multiple Delay Feedback Control. Phys. Rev. Lett. 93 (2004) 264101. [CrossRef] [PubMed] [Google Scholar]
  2. A. Ahlborn and U. Parlitz, Controlling dynamical systems using multiple delay feedback control. Phys. Rev. E 72 (2005) 016206. [Google Scholar]
  3. A. Ahlborn and U. Parlitz, Laser stabilization with multiple-delay feedback control. Opt. Lett. 31 (2006) 465–467. [PubMed] [Google Scholar]
  4. A. Amann and E.W. Hooton, An odd-number limitation of extended time-delayed feedback control in autonomous systems. Phil. Trans. R. Soc. A 371 (2013) 20120463. [Google Scholar]
  5. S. Boccaletti, E. Allaria and R. Meucci, Experimental control of coherence of a chaotic oscillator. Phys. Rev. E 69 (2004) 066211. [Google Scholar]
  6. N. Bogoliubov, Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon & Breach, Paris (1961). [Google Scholar]
  7. O. D’Huys, Th. Jungling and W. Kinzel, Stochastic switching in delay-coupled oscillators. Phys. Rev. E 90 (2014) 032918. [Google Scholar]
  8. A.V. Dolmatova, D.S. Goldobin and A. Pikovsky, Synchronization of coupled active rotators by common noise. Phys. Rev. E 96 (2017) 062204. [PubMed] [Google Scholar]
  9. V.V. Emel’yanov, N.M. Ryskin and O.S. Khavroshin, Suppression of Self-Modulation in the Self-Oscillator with Delayed Feedback Using the Method for Chaos Control. J. Commun. Tech. Electron. 54 (2009) 685–691. [Google Scholar]
  10. B. Fiedler, V. Flunkert, M. Georgi, P. Hövel and E. Schöll, Refuting the odd number limitation of time-delayed feedback control. Phys. Rev. Lett. 98 (2007) 114101. [CrossRef] [PubMed] [Google Scholar]
  11. K. Furutsu, On the statistical theory of electromagnetic waves in a fluctuating media. J. Res. Natl. Bur. Stand. D 67 (1963) 303–323. [Google Scholar]
  12. C.W. Gardiner, Handbook of Stochastic Methods. Springer, Berlin (1983). [Google Scholar]
  13. D.S. Goldobin, Anharmonic resonances with recursive delay feedback. Phys. Lett. A 375 (2011) 3410–3414. [Google Scholar]
  14. D.S. Goldobin, Uncertainty principle for control of ensembles of oscillators driven by common noise. EPJST 223 (2014) 677–685. [CrossRef] [EDP Sciences] [Google Scholar]
  15. D.S. Goldobin and A.V. Dolmatova, Interplay of the mechanisms of synchronization by common noise and global coupling for a general class of limit-cycle oscillators. Commun. Nonlinear Sci. Numer. Simulat. 75 (2019) 94–108. [Google Scholar]
  16. D.S. Goldobin and L.S. Klimenko, Resonances and multistability in a Josephson junction connected to a resonator. Phys. Rev. E 97 (2018) 022203. [PubMed] [Google Scholar]
  17. D. Goldobin, M. Rosenblum and A. Pikovsky, Controlling oscillator coherence by delayed feedback. Phys. Rev. E 67 (2003) 061119. [Google Scholar]
  18. D. Goldobin, M. Rosenblum and A. Pikovsky, Coherence of noisy oscillators with delayed feedback. Phys. A 327 (2003) 124–128. [Google Scholar]
  19. D.S. Goldobin, J.-N. Teramae, H. Nakao and G.B. Ermentrout, Dynamics of Limit-Cycle Oscillator Subject to General Noise. Phys. Rev. Lett. 105 (2010) 154101. [CrossRef] [PubMed] [Google Scholar]
  20. Y.M. Guznov, Y.Y. Danilov, S.V. Kuzikov, Y.V. Novozhilova, A.S. Shevchenko, N.I. Zaitsev and N.M. Ryskin, Megawatt-power Ka-band gyroklystron oscillator with external feedback. Appl. Phys. Lett. 103 (2013) 173505. [Google Scholar]
  21. B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky and R. Mrowka, Uncovering interaction of coupled oscillators from data. Phys. Rev. E 76 (2007) 055201(R). [Google Scholar]
  22. E.N. Lorenz, Deterministic Nonperiodic Flow. J. Atmos. Sci. 20 (1963) 130–141. [Google Scholar]
  23. H. Nakajima, On analytical properties of delayed feedback control of chaos. Phys. Lett. A 232 (1997) 207–210. [Google Scholar]
  24. H. Nakao, J.-N. Teramae, D.S. Goldobin and Y. Kuramoto, Effective long-time phase dynamics of limit-cycle oscillators driven by weak colored noise. Chaos 20 (2010) 033126. [Google Scholar]
  25. Y. Novikov, Functionals and the random force method in turbulence theory. Sov. Phys. JETP 20 (1965) 1290–1294. [Google Scholar]
  26. A.H. Pawlik and A. Pikovsky, Control of oscillators coherence by multiple delayed feedback. Phys. Lett. A 358 (2006) 181–185. [Google Scholar]
  27. A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge Univ. Press, Cambridge (2001). [Google Scholar]
  28. A.V. Pimenova and D.S. Goldobin, Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability. J. Phys.: Conf. Ser. 681 (2016) 012045. [Google Scholar]
  29. K. Pyragas, Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170 (1992) 421–428. [Google Scholar]
  30. K. Pyragas, Control of chaos via extended delay feedback. Phys. Lett. A 206 (1995) 323–330. [Google Scholar]
  31. N.M. Ryskin and O.S. Khavroshin, Suppressing Self-Modulation Instability in a Delayed Feedback Traveling Wave Tube Oscillator Using Controlling Chaos Technique. IEEE Transactions on Electron Devices 55 (2008) 662–667. [Google Scholar]
  32. A.E. Samoilova and A. Nepomnyashchy, Feedback control of Marangoni convection in a thin film heated from below. J. Fluid Mech. 876 (2019) 573–590. [Google Scholar]
  33. A.E. Samoilova and A. Nepomnyashchy, Nonlinear feedback control of Marangoni wave patterns in a thin film heated from below. Physica D: Nonlinear Phenomena 412 (2020) 132627. [Google Scholar]
  34. R.L. Stratonovich, Topics in the Theory of Random Noise. Gordon and Breach, New York (1967). [Google Scholar]
  35. J.-N. Teramae, H. Nakao and G.B. Ermentrout, Stochastic Phase Reduction for a General Class of Noisy Limit Cycle Oscillators. Phys. Rev. Lett. 102 (2009) 194102. [PubMed] [Google Scholar]
  36. K. Yoshimura and K. Arai, Phase Reduction of Stochastic Limit Cycle Oscillators. Phys. Rev. Lett. 101 (2008) 154101. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.