Math. Model. Nat. Phenom.
Volume 16, 2021
Control of instabilities and patterns in extended systems
Article Number 49
Number of page(s) 16
Published online 31 August 2021
  1. A. Ajdari, Electroosmosis on inhomogeneously charged surfaces. Phys. Rev. Lett. 75 (1995) 755–759. [Google Scholar]
  2. M. Baumann and I.R. Baxendale, The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry. Beilstein J. Org. Chem. 11 (2015) 1194–1219. [PubMed] [Google Scholar]
  3. E. Boyko, S. Rubin, A.D. Gat and M. Bercovoci, Flow patterning in Hele-Shaw configurations using non-uniform electro-osmotic slip. Phys. Fluids. 27 (2015) 102001. [Google Scholar]
  4. E. Boyko, M. Bercovici and A. Gat, Flow of power-law liquids in a Hele-Shaw cell driven by non-uniform electro-osmotic slip in the case of strong depletion. J. Fluid Mech. 807 (2016) 235–257. [Google Scholar]
  5. D.A. Bratsun and A. De Wit, Buoyancy-driven pattern formation in reactive immiscible two-layer systems. Chem. Eng. Sci. 66 (2011) 5723–5734. [Google Scholar]
  6. D. Bratsun, K. Kostarev, A. Mizev and E. Mosheva, Concentration-dependent diffusion instability in reactive miscible fluids. Phys. Rev. E. 92 (2015) 011003. [Google Scholar]
  7. D.A. Bratsun, O.S. Stepkina, K.G. Kostarev, A.I. Mizev and E.A. Mosheva, Development of con-centration-dependent diffusion instability in reactive miscible fluids under influence of constant or variable inertia. Microgr. Sci. Technol. 26 (2016) 575–585. [Google Scholar]
  8. D. Bratsun, A. Mizev, E. Mosheva and K. Kostarev, Shock-wave-like structures induced by an exothermic neutralization reaction in miscible fluids. Phys. Rev. E. 96 (2017) 053106. [Google Scholar]
  9. D. Bratsun, K. Kostarev, A. Mizev, S. Aland, M. Mokbel, K. Schwarzenberger and K. Eckert, Adaptive micromixer based on the solutocapillary Marangoni effect in a continuous-flow microreactor. Micromachines 9 (2018) 600. [Google Scholar]
  10. D. Bratsun and R. Siraev, Controlling mass transfer in a continuous-flow microreactor with a variable wall relief. Int. Commun. Heat Mass Transf . 113 (2020) 104522. [Google Scholar]
  11. H. Chen, Y.T. Zhang, I. Mezic, C.D. Meinhart and L. Petzold, Numerical simulation of an electroosmotic micromixer. Proc Microfluidics 2003 (ASME IMECE) (2003). [Google Scholar]
  12. E. Cummings, S. Griffiths, R. Nilson and P. Paul, Conditions for similitude between the fluid velocity and the electric field in electroosmotic flow. Anal. Chem. 72 (2000) 2526–2532. [Google Scholar]
  13. P.V. Danckwerts, Gas-liquid reactions. McGraw-Hill Book Co., New York (1970). [Google Scholar]
  14. S.S. Dukhin, Non-equilibrium electric surface phenomena. Adv. Colloid Interface Sci. 44 (1993) 1–134. [Google Scholar]
  15. P. Federico, B. Vesna, V. Govind Kaigala and M. Bercovoci, Dynamic microscale flow patterning using electrical modulation of zeta potential. Proc. Natl. Acad. Sci. 116 (2019) 10258–10263. [Google Scholar]
  16. V.L. Hessel and F. Holger-Schönfeld, Micromixers – a review on passive and active mixing principles. Chem. Eng. Sci. 60 (2005) 2479. [Google Scholar]
  17. K.F. Jensen, Microreaction engineering – is small better? Chem. Eng. Sci. 56 (2001) 293. [Google Scholar]
  18. L. Joly, C. Ybert, E. Trizac and L. Bocquet, Hydrodynamics within the electric double layer on slipping surfaces. Phys. Rev. Lett. 93 (2004) 257805. [Google Scholar]
  19. A.S. Khair and T.M. Squires, Fundamental aspects of concentration polarization arising from nonuniform electrokinetic transport. Phys. Fluids 20 (2008) 087102. [Google Scholar]
  20. L.G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport. Cambridge University Press, Cambridge (2007). [Google Scholar]
  21. J. Lyklema (Ed.), Vol. 2 of Fundamentals of Interface and Colloid Science: solid–liquid Interfaces. Academic Press (1995). [Google Scholar]
  22. S. Mascia, P.L. Heider, H. Zhang, R. Lakerveld, B. Benyahia, P.I. Barton, R.D. Braatz, C.L. Cooney, J.M.B. Evans, T.F. Jamison, K.F. Jensen, A.S. Myerson and B.L. Trout, End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew. Chem. Int. Ed. 52 (2013) 12359–12363. [Google Scholar]
  23. S. Muthu, F. Svec, C.H. Mastrangelo, J.M.J. Frechet and Y.B. Gianchandani, Enhanced electro-osmotic pumping with liquid bridge and field effect flow rectification. 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest (IEEE, New York) (2004). [Google Scholar]
  24. M.J. Nieves-Remacha, A.A. Kulkarni and K.F. Jensen, Hydrodynamics of liquid–liquid dispersion in an advanced-flow reactor. Ind. Eng. Chem. Res. 51 (2012) 16251. [Google Scholar]
  25. F. Paratore, E. Boyko, G. Kaigala and M. Bercovici, Electroosmotic flow dipole: experimental observation and flow field patterning. Phys. Rev. Lett. 122 (2019) 224502. [Google Scholar]
  26. F. Paratore, E. Boyko, A.D. Gat, G.V. Kaigala and M. Bercovici, Toward microscale flow control using non-uniform electro-osmotic flow. Proceedings SPIE BiOS: Microfluidics, BioMEMS, and Medical Microsystems XVI (International Society for Optics and Photonics, Bellingham, WA). 10491 (2018). [Google Scholar]
  27. L. Pellegatti and J. Sedelmeier, Synthesis of vildagliptin utilizing continuous flow and batch technologies. Org. Process Res. Dev. 19 (2015) 551–554. [Google Scholar]
  28. W. Reschetilowski (Ed.), Microreactors in preparative chemistry. Wiley-VCH, Weinheim (2013). [Google Scholar]
  29. A.D. Stroock, S.K.W. Dertinger, A. Ajdari et al., Chaotic mixer for microchannels. Science 295 (2002) 647–651. [CrossRef] [PubMed] [Google Scholar]
  30. E.J. van der Wouden, D.C. Hermes, J.G.E. Gardeniers and A. van den Berg, Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields. Lab Chip. 6 (2006) 1300–1305. [Google Scholar]
  31. J. Wegner, S. Ceylan and A. Kirschning, Ten key issues in modern flow chemistry. Chem. Commun. 47 (2011) 4583. [Google Scholar]
  32. J. Zeng, Y.C. Yortsos and D. Salin, On the Brinkman correction in uni-directional Hele-Shaw flows. Phys. Fluids 15 (2003) 3829. [CrossRef] [MathSciNet] [Google Scholar]
  33. Y.T. Zhang, H. Chen, I. Mezic, C.D. Meinhart, L. Petzold and N.C. MacDonald, SOI processing of a ring electrokinetic chaotic micromixer. Proc NSTI Nanotechnology Conference (Nanotech 2004) (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.