Math. Model. Nat. Phenom.
Volume 16, 2021
Fractional Dynamics in Natural Phenomena
Article Number 50
Number of page(s) 14
Published online 17 September 2021
  1. B. Ahmad and S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order. Appl. Math. Comput. 217 (2010) 480–487. [Google Scholar]
  2. Z. Bai, On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72 (2010) 916–924. [Google Scholar]
  3. V.P. Dubey, S. Dubey, D. Kumar and J. Singh, A computational study of fractional model of atmospheric dynamics of carbon dioxide gas. Chaos Solitons Fract. 142 (2021) 110375. [Google Scholar]
  4. H. Eltayeb, Hassan and A. Kiliçman, A note on solutions of wave, Laplace’s and heat equations with convolution terms by using a double Laplace transform. Appl. Math. Lett. 21 (2008) 1324–1329. [Google Scholar]
  5. W. Gao, P. Veeresha, D.G. Prakasha, H.M. Baskonus and G. Yel, New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function. Chaos Solit. Fract. 134 (2020) 109696. [Google Scholar]
  6. X.Y. Ge et al., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503 (2013) 535–538. [PubMed] [Google Scholar]
  7. M. Goyal, H.M. Baskonus and A. Prakash, An efficient technique for a time fractional model of lassa hemorrhagic fever spreading in pregnant women. Eur. Phys. J. Plus 134 (2019) 1–10. [Google Scholar]
  8. R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). [Google Scholar]
  9. F.W.C. Jasper et al., Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from patients with acute respiratory disease in Wuhan, Hubei, China. Emerg. Microbes Infect. 9 (2020) 221–236. [PubMed] [Google Scholar]
  10. R.A. Khan and K. Shah, Existence and uniqueness of solutions to fractional order multi-point boundary value problems. Commun. Appl. Anal. 19 (2015) 515–526. [Google Scholar]
  11. T. Khan, K. Shah, R.A. Khan and A. Khan, Solution of fractional order heat equation via triple Laplace transform in 2 dimensions. Math. Methods Appl. Sci. 4 (2018) 818–825. [Google Scholar]
  12. A.A. Kilbas, H. Srivastava and J. Trujillo, Theory and application of fractional differential equations. Vol. 204 of North Holland Mathematics Studies. Elsevier, Amsterdam (2006). [Google Scholar]
  13. D. Kumar, J. Singh, M. Al-Qurashi and D. Baleanu, A new fractional SIRS-SI malaria disease model with application of vaccines, anti-malarial drugs, and spraying. Adv. Diff. Equ. 278 (2019) 1–10. [Google Scholar]
  14. V. Lakshmikantham and S. Leela, Naguma-type uniqueness result for fractional differential equations. Non-linear Anal. 71 (2009) 2886–2889. [Google Scholar]
  15. Q. Lin et al., A conceptual model for the coronavirusdisease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int. J. Infect. Diseases 93 (2020) 211–216. [Google Scholar]
  16. J.A. Lotka, Contribution to the theory of periodic reactions. J. Phys. Chem. 2002 (2002) 271–274. [Google Scholar]
  17. H. Lu, C.W. Stratton and Y.W. Tang, Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J. Med. Virol. 92 (2020) 401. [PubMed] [Google Scholar]
  18. H. Lu et al., Outbreak of Pneumonia of Unknown Etiology in Wuhan China: the Mystery and the Miracle. J. Med. Virol. 92 (2020) 401. [PubMed] [Google Scholar]
  19. K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993). [Google Scholar]
  20. S. Nag, A mathematical model in the time of COVID-19, a preprint 13 March 2020. [Google Scholar]
  21. I. Podlubny. Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, New York (1999). [Google Scholar]
  22. J. Riou and C.L. Althaus, Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance 25 (2020) 2000058. [Google Scholar]
  23. Y.A. Rossikhin and M.V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50 (1997) 15–67. [Google Scholar]
  24. K. Shah, N. Ali and R.A. Khan, Existence of positive solution to a class of fractional differential equations with three point boundary conditions. Math. Sci. Lett. 5 (2016) 291–296. [Google Scholar]
  25. K. Shah, H. Khalil and R.A. Khan, Analytical solutions of fractional order diffusion equations by natural transform method. Iran. J. Sci. Technol. A 42 (2018) 1479–1490. [Google Scholar]
  26. K. Shah, M.A. Alqudah, F. Jarad and T. Abdeljawad, Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo-Febrizio fractional order derivative. Chaos Solitons Fract. 135 (2020) 109754. [Google Scholar]
  27. J. Singh, Analysis of fractional blood alcohol model with composite fractional derivative. Chaos Solitons Fract. 140 (2020) 110127. [Google Scholar]
  28. H. Singh, Analysis for fractional dynamics of Ebola virus model. Chaos Solitons Fract. 138 (2020) 109992. [Google Scholar]
  29. H. Singh, Operational matrix approach for approximate solution of fractional model of Bloch equation. J. King Saud Univ. Sci. 29 (2017) 235–240. [Google Scholar]
  30. H. Singh and C.S. Singh, A reliable method based on second kind Chebyshev polynomial for the fractional model of Bloch equation. Alexand. Eng. J. 57 (2018) 1425–1432. [Google Scholar]
  31. H. Singh and H.M. Srivastava, Numerical simulation for fractional-order Bloch equation arising in nuclear magnetic resonance by using the Jacobi polynomials. Appl. Sci. 10 (2020) 2850. [Google Scholar]
  32. H. Singhand H.M. Srivastava, Numerical investigation of the fractional-order Liénard and Duffing equations arising in oscillating circuit theory. Front. Phys. 8 (2020) 120. [Google Scholar]
  33. H. Singh, R. Pandey and H. Srivastava, Solving non-linear fractional variational problems using Jacobi polynomials. Mathematics 7 (2019) 224. [Google Scholar]
  34. H. Singh and H.M. Srivastava, Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients. Physica A 523 (2019) 1130–1149. [Google Scholar]
  35. H. Singh, F.A. Ghassabzadeh, E. Tohidi and C. Cattani, Legendre spectral method for the fractional Bratu problem. Math. Methods Appl. Sci. 43 (2020) 5941–5952. [Google Scholar]
  36. H. Singh, H.M. Srivastava and D. Kumar, A reliable algorithm for the approximate solution of the nonlinear Lane-Emden type equations arising in astrophysics. Num. Method. Par. Diff. Equ. 34 (2018) 1524–1555. [Google Scholar]
  37. J. Singh, H.K. Jassim and D. Kumar, An efficient computational technique for local fractional Fokker Planck equation. Physica A 555 (2020) 124525. [Google Scholar]
  38. J. Singh, D. Kumar and D. Baleanu, A new analysis of fractional fish farm model associated with Mittag-Leffler type kernel. Int. J. Biomed. 13 (2020) 2050010. [Google Scholar]
  39. J. Singh, A. Ahmadian, S. Rathore, D. Kumar, D. Baleanu, M. Salimi and S. Salahshour, An efficient computational approach for local fractional Poisson equation in fractal media. Num. Method. Par. Diff. Equ. 37 (2021) 1439–1448. [Google Scholar]
  40. H. Singh, M.R. Sahoo and O.P. Singh, Numerical method based on Galerkin approximation for the fractional advection-dispersion equation. Int. J. Appl. Comput. Math. 3 (2017) 2171–2187. [Google Scholar]
  41. G. Spiga and M. Spiga, Two-dimensional transient solutions for crossflow heat exchangers with neither gas mixed. J. Heat Transfer-trans. ASME 109 (1987) 281–286. [Google Scholar]
  42. X. Tian et al., Potent bindingof 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect. 9 (2020) 382–385. [PubMed] [Google Scholar]
  43. J. Wang, Y. Zhou and W. Wei, Study in fractional differential equations by means of topological Degree methods. Numer. Funct. Anal. Opti. 33 (2012) 216–238. [Google Scholar]
  44. World Health Organization, Coronavirusdisease 2019 (COVID-19) Situation Report-62. (2020). [Google Scholar]
  45. Y. Zhang, Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform. Therm. Sci. 18 (2014) 677–681. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.