Open Access
Issue
Math. Model. Nat. Phenom.
Volume 16, 2021
Article Number 51
Number of page(s) 17
DOI https://doi.org/10.1051/mmnp/2021041
Published online 17 September 2021
  1. D. Applebaum, Lévy Process and Stochastic Calculus, Cambridge Studies in Advance Mathematics. Cambridge University Press (2004). [Google Scholar]
  2. U.M. Ascher and R.I. McLachlan, On symplectic and multisymplectic schemes for the KdV equation, J. Sci. Comput. 25 (2005) 83–104. [Google Scholar]
  3. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schrödinger equations. Geom. Funct. Anal. 3 (1993) 107–156. [Google Scholar]
  4. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: The KdV equation, Geom. Funct. Anal. 3 (1993) 209–262. [Google Scholar]
  5. J. Bourgain, Periodic Korteweg de vries equation with measures as initial data. Sel. Math. 3 (1997) 115–159. [Google Scholar]
  6. A. Bouard and A. Debussche, On the stochastic Korteweg-de Vries equation. J. Funct. Anal. 154 (1998) 215–251. [Google Scholar]
  7. A. Bouard, A. Debussche and Y. Tsutsumi, White noise driven Korteweg-de Vries equation. J. Funct. Anal. 169 (1999) 532–558. [Google Scholar]
  8. A. Bouard and A. Debussche, Random modulation of solitons for the stochastic Korteweg-de Vries equation. Ann. Inst. Henri Poincaré (C) Analyse Non Linéaire 24 (2007) 251–278. [Google Scholar]
  9. A. Bouard and E. Hausenblas, The nonlinear Schrödinger equation driven by jump processes. J. Math. Anal. Appl. 475 (2019) 215–252. [Google Scholar]
  10. Z. Brzé niak and J. Zabczyk, Regularity of Ornstein-Uhlenbeck process driven by a Lévy white noise. Potential Anal. 32 (2010) 153–188. [Google Scholar]
  11. T. Buckmaster and H. Koch, The Korteweg-de Vries equation at H−1 regularity. Ann. Inst. Henri Poincaré-AN 32 (2015) 1071–1098. [Google Scholar]
  12. J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on R and T. J. Am. Math. Soc. 16 (2003) 705–749. [Google Scholar]
  13. M. Christ, J. Colliander and T. Tao, Asympotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Am. J. Math. 125 (2003) 1235–1293. [Google Scholar]
  14. Z. Dong, T. Xu and T. Zhang, Invariant measures for stochastic evolution equations of pure jump type. Stoch. Proc. Appl. 119 (2009) 410–427. [Google Scholar]
  15. I. Ekren and I. Kukavica, Existence of invariant measures for the stochastic damped Kdv equation. Indiana Univ. Math. J. 3 (2018) 1221–1254. [Google Scholar]
  16. Z. Guo, Global well-posedness of the Korteweg-de Vries equation in H−3∕4, J. Math. Pures Appl. 91 (2009) 583–597. [Google Scholar]
  17. M. Hairer, Ergodicity for stochastic PDEs, 2008. http://www.hairer.org/notes/Imperial.pdf. [Google Scholar]
  18. T. Kappeler and P. Topalov, Global wellposedness of KdV in H−1(T, R). Duke Math. J. 135 (2006) 327–360. [Google Scholar]
  19. C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc. 4 (1991) 323–47. [Google Scholar]
  20. C. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices. Duke Math. J. 71 (1993) 1–21. [Google Scholar]
  21. C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46 (1993) 527–620. [Google Scholar]
  22. C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 9 (1996) 573–603. [Google Scholar]
  23. C. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106 (2001) 617–633. [Google Scholar]
  24. R. Killip and M. Visan, KdV is well-posed in H−1. Ann. Math. 190 (2019) 249–305. [Google Scholar]
  25. N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity. Diff. Int. Equ. 22 (2009) 447–464. [Google Scholar]
  26. S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications. Internat. Math. Res. Notices (1994) 383ff. approx. 7 pp. (electronic). [Google Scholar]
  27. D. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves. Phil. Mag. 39 (1985) 422–443. [Google Scholar]
  28. S. Li, Well-posedness and asymptotic behavior for some nonlinear evolution equations. Dissertation, 2015. [Google Scholar]
  29. Y. Li and W. Yan, The Cauchy problem for higher-order KdV equations forced by white noise. J. Henan Normal Univ. 45 (2017) 1–8. [Google Scholar]
  30. L. Molinet, A note on ill posedness for the KdV equation. Diff. Int. Equ. 24 (2011) 759–765. [Google Scholar]
  31. L. Molinet, Sharp ill-posedness results for the KdV and mKdV equations on the torus. Adv. Math. 230 (2012) 1895–1930. [Google Scholar]
  32. G. Prato and J. Zabczyk, Ergodicity for infinite-dimensional systems. Cambridge University Press, Cambridge (1996). [Google Scholar]
  33. G. Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge (1992). [Google Scholar]
  34. T. Tao, Multilinear weighted convolution of L2 functions, and applications to non-linear dispersive equations. Am. J. Math. 123 (2001) 839–908. [Google Scholar]
  35. N. Tzvetkov, Remark on the local ill-posedness for KdV equation. C. R. Acad Sci Paris 329 (1999) 1043–1047. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.