Issue
Math. Model. Nat. Phenom.
Volume 16, 2021
Control of instabilities and patterns in extended systems
Article Number 40
Number of page(s) 12
DOI https://doi.org/10.1051/mmnp/2021031
Published online 16 June 2021
  1. M. Alava, M. Dubé and M. Rost, Imbibition in disordered media. Adv. Phys. 53 (2004) 83–175. [Google Scholar]
  2. G.I. Barenblatt, V.M. Entov and V.M. Ryzhik, Theory of Fluid Flows Through Natural Rocks. Springer, Netherlands (1990). [Google Scholar]
  3. S. Berg and H. Ott, Stability of CO2–brine immiscible displacement. Int. J. Greenhouse Gas Control 11 (2012) 188–203. [Google Scholar]
  4. J.U. Brackbill, D.B. Kothe and C. Zemach, A continuum method for modeling surface tension. J. Comput. Phys. 100 (1992) 335–354. [Google Scholar]
  5. D. Coumou, T. Driesner, S. Geiger, C.A. Heinrich and S. Matthäi, The dynamics of mid-ocean ridge hydrothermal systems: splitting plumes and fluctuating vent temperatures. Earth Planet. Sci. Lett. 245 (2006) 218–231. [Google Scholar]
  6. L. Cueto-Felgueroso and R. Juanes, Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. Phys. Rev. Lett. 101 (2008). [CrossRef] [Google Scholar]
  7. M. Hekmatzadeh, M. Dadvar and M. Sahimi, Pore-network simulation of unstable miscible displacements in porous media. Transp. Porous Media 113 (2016) 511–529. [Google Scholar]
  8. A.O. Ivantsov and T.P. Lyubimova, Dynamics of a liquid drop in porous medium saturated by another liquid under gravity. J. Phys.: Conf. Ser. 681 (2016) 012040. [Google Scholar]
  9. V. Joekar-Niasar and S.M. Hassanizadeh, Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: a review. Crit. Rev. Environ. Sci. Technol. 42 (2012) 1895–1976. [Google Scholar]
  10. L.W. Lake, Enhanced oil recovery 1 (1989). [Google Scholar]
  11. D.V. Lyubimov and S.V. Shklyaev, Instability of the motion of a drop in filtration flows. Fluid Dyn. 40 (2005) 777–784. [Google Scholar]
  12. D.V. Lyubimov, S. Shklyaev, T.P. Lyubimova and O. Zikanov, Instability of a drop moving in a brinkman porous medium. Phys. Fluids 21 (2009) 014105. [CrossRef] [Google Scholar]
  13. D.V. Lyubimov and T.P. Lyubimova, On a straight-through method of calculation for problems with deformable interface. Model. Mech. 1 (1990) 136–140. [Google Scholar]
  14. D.V. Lyubimov and G.A. Sedel’nikov, Effect of vibration on the stability of a plane displacement front in a porous medium. Fluid Dyn. 41 (2006) 3–11. [Google Scholar]
  15. P. MacNeice, K.M. Olson, C. Mobarry, R. de Fainchtein and C. Packer, PARAMESH: a parallel adaptive mesh refinement community toolkit. Comput. Phys. Commun. 126 (2000) 330–354. [Google Scholar]
  16. D.A. Nield and A. Bejan, Convection in Porous Media Convection in Porous Media (2017). [Google Scholar]
  17. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. [Google Scholar]
  18. H.S. Rabbani, D. Or, Y. Liu, C.-Y. Lai, N.B. Lu, S.S. Datta, H.A. Stone and N. Shokri, Suppressing viscous fingering in structured porous media. Proc. Natl. Acad. Sci. 115 (2018) 4833–4838. [Google Scholar]
  19. Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986) 856–869. [Google Scholar]
  20. M. Sahimi, Flow and Transport in Porous Media and Fractured Rock. Wiley-VCH Verlag GmbH & Co. KGaA (2011). [Google Scholar]
  21. V. Sharma, S. Nand, S. Pramanik, C.-Y. Chen and M. Mishra, Control of radial miscible viscous fingering. J. Fluid Mech. 884 (2020) A16. [Google Scholar]
  22. M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1994) 146–159. [Google Scholar]
  23. M. Trojer, M.L. Szulczewski and R. Juanes, Stabilizing fluid-fluid displacements in porous media through wettability alteration. Phys. Rev. Appl. 3 (2015). [CrossRef] [Google Scholar]
  24. C.-Y. Wang, Fundamental models for fuel cell engineering. ChemInform 35 (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.