Issue
Math. Model. Nat. Phenom.
Volume 16, 2021
Fractional Dynamics in Natural Phenomena
Article Number 39
Number of page(s) 28
DOI https://doi.org/10.1051/mmnp/2021022
Published online 15 June 2021
  1. A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Thermal Sci. 20 (2) (2016) 763–769. [Google Scholar]
  2. T.M. Atanackovic, S. Pilipovic and D. Zorika, Properties of the Caputo-Fabrizio fractional derivative and its distributional settings. Fract. Calc. Appl. Anal. 21 (2018) 29–44. [Google Scholar]
  3. D. Baleanu, K. Diethlem, E. Scalas and J.J. Trujillo, Fractional calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, vol. 3, World Scientific (2011). [Google Scholar]
  4. G.A.M. Boro Nchama, Properties of Caputo-Fabrizio fractional operators. NTMSCI 8 (2020) 1–25. [Google Scholar]
  5. M. Caputo, Elasticita e Dissipazione. Zanichelli, Bologna (1965). [Google Scholar]
  6. M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1 (2015) 73–85. [Google Scholar]
  7. M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels. Progr. Fract. Differ. Appl. 2 (2016) 1–11. [Google Scholar]
  8. R. Gorenflo, A.A. Kilbas, F. Mainardi and S.V. Rogosin, Mittag-Leffler Functions Related Topics and Applications, Springer, Heildelberg (2014). [Google Scholar]
  9. E.C. Grigoletto, E.C. Oliveira and R.F. Camargo, Integral representations of Mittag-Leffler function on the positive real axis. Tendencias Matematica Aplicada e Computacional 20 (2019) 217–228. [Google Scholar]
  10. H.J. Haubold, A.M. Mathai and R.K. Saxena, Mittag-Leffler functions and their applications. J. Appl. Math. 2011 (2011) 298628, 51 pages. [Google Scholar]
  11. J. Hristov, Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels. Pragmatic approach, memory kernel correspondence requirement and analyses. Eur. Phys. J. Plus 134 (2019) 283. [Google Scholar]
  12. J. Hristov, On the Atangana–Baleanu derivative and its relation to the fading memory concept: the diffusion equation formulation, in Fractional Derivatives with Mittag-Leffler Kernel, Studies in Systems, Decision and Control 194, edited by J.F. Gómez et al. Springer Nature Switzerland AG (2019). [Google Scholar]
  13. J. Kacur and R. Van Keer, Solution of contaminant transport with adsorption in porous media by the method of characteristics. Math. Modelling Num. Anal. 35 (2001) 981–1006. [Google Scholar]
  14. D. Kumar, J. Singh, K. Tanwar and D. Baleanu, A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. Int. J. Heat Mass Transfer 138 (2019) 1222–7. [Google Scholar]
  15. S. Kumar, S. Ghosh, B. Samet and E.F.D. Goufo, An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator. Math. Meth. Appl. Sci. 43 (2020) 6062–6080. [Google Scholar]
  16. H. Kurikami, A. Malins, M. Takeishi, K. Saito and K. Iijima, Coupling the advection-dispersion equation with fully kinetic reversible/irreversible sorption terms to model radiocesium soil profiles in PlaceNameplaceFukushima PlaceTypePrefecture. J. Environ. Radioactivity 171 (2017) 99–109. [Google Scholar]
  17. M. Kurulay and M. Bayram, Some properties of the Mittag-Leffler functions and their relation with the Wright functions. Adv. Differ. Eqs. 2012 (2012) 181. [Google Scholar]
  18. S. Lee, D.J. Kim and J.W. Choi, Comparison of first-order sorption kinetics using concept of two-site sorption model. Environ. Eng. Sci. 29 (2012) 1002–1007. [PubMed] [Google Scholar]
  19. F.J. Leij and M. Th. Vn Genuchten, Solute transport, in Soil Physics Companion, edited by A.W. Warrick. CRC Press, Boca Raton FL (2002) 189–240. [Google Scholar]
  20. C.F. Lorenzo and T.T. Hartley, Generalized functions for the fractional calculus. NASA/TP-1999- 209424/REV1. [Google Scholar]
  21. Y. Liu, F.Zong and L. Zheng, The analysis solutions for two-dimensional fractional diffusion equations with variable coefficients. Int. J. Math. Trends Technol. 5 (2014) 60–66. [Google Scholar]
  22. Y.U. Luchko, Operational method in fractional calculus. Fract. Calc. Appl. Anal. 2 (1999) 463–488. [Google Scholar]
  23. Y. Luchko, On some new properties of the fundamental solution to the multi-dimensional space- and time-fractional diffusion-wave equation. Mathematics 5 (2017) 76. [Google Scholar]
  24. Y. Povstenko and T. Kyrylych, Two approaches to obtaining the space-time fractional advection-diffusion equation. Entropy 19 (2017) 297. [Google Scholar]
  25. J.L. Schiff, The Laplace Transform: Theory and Applications. Springer Verlag, New York (1999). [Google Scholar]
  26. B. Stankovic, On the function E.M. Wright. Publications de L’Institute Mathematique, Nouvelle serie, 10 (1970) 113–124. [Google Scholar]
  27. G. Uffink, A. Elfeki, M. Dekking, J. Bruining and C. Kraaikamp, Understanding the non-Gaussian nature of linear reactive solute transport in 1D and 2D. From particle dynamics to the partial differential equations. Transp. Porous Med. 91 (2012) 547–571. [Google Scholar]
  28. J.J.A. van Kooten, A method to solve the advection-dispersion equation with a kinetic adsorption isotherm. Adv. Water Res. 19 (1996) 193–206. [Google Scholar]
  29. Y.S. Wu, J.B. Kool, P.S. Huyakom and Z.A. Saleem, An analytical model for nonlinear adsorptive transport through layered soils. Water Resour. Res. 33 (1997) 21–29. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.