Open Access
Math. Model. Nat. Phenom.
Volume 16, 2021
Article Number 38
Number of page(s) 15
Published online 16 June 2021
  1. K.M. Abdul Al Woadud, D. Kumar, M.J. Islam, M. ImrulKayes and A.K. Joardar, Analytic solutions of the chiral nonlinear schrödinger equations investigated by an efficient approach. Int. J. Phys. Res. 7 (2019) 94–99. [CrossRef] [Google Scholar]
  2. K.K. Ali, H. Rezazadeh, R.A. Talarposhti and A. Bekir, New soliton solutions for resonant nonlinear Schrödinger’s equation having full nonlinearity. Int. J. Mod. Phys. B. 34 (2020) 2050032. [CrossRef] [Google Scholar]
  3. S. Ali and M. Younis, Rogue wave solutions and modulation instability with variable coefficient and Harmonic potential. Front. Phys. 7 (2020) 255. [CrossRef] [Google Scholar]
  4. A. Biswas, Perturbation of chiral solitons. Nucl. Phys. 806 (2009) 457–461. [CrossRef] [Google Scholar]
  5. A. Biswas and D. Milovic, Chiral solitons with Bohm potential by He’s variational principle. Phys. Atomic Nuclei. 74 (2011) 781–783. [CrossRef] [Google Scholar]
  6. A. Biswas, M.O. Al-Amr, H. Rezazadeh, Mirzazadeh, M. Eslami, Q. Zhou and M. Belic, Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution. Optik 165 (2018) 233–239. [CrossRef] [Google Scholar]
  7. H. Bulut, T.A. Sulaiman and B. Demirdag, Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations. Nonlinear Dyn. 91 (2017) 1985–1991. [CrossRef] [Google Scholar]
  8. N. Cheema and M. Younis, New and more exact traveling wave solutions to integrable (2+1)-dimensional Maccari system. Nonlinear Dyn. 83 (2016) 1395–1401. [CrossRef] [Google Scholar]
  9. M.T. Darvishi, M. Najafi and A. M. Wazwaz, New extended rational trigonometric methods and applications., Waves Random Comp. 30 (2018) 1–22. [Google Scholar]
  10. G. Ebadi, A. Yildirim and A. Biswas, Chiral solitons with bohm potential using GG method and exp function method. Rom. Rep. Phys. 64 (2012) 357–366. [Google Scholar]
  11. M.M.A. El-Sheikh, A.R. Seadawy, H.M. Ahmed, A.H. Arnous and W.B. Rabie, Dispersive and propagation of shallow water waves as a higher order nonlinear Boussinesq-like dynamical wave equations. Physica A. 537 (2020) 122662. [CrossRef] [Google Scholar]
  12. M. Eslami, Trial solution technique to chiral nonlinear Schrödinger’s equation in (1+2)-dimensions. Nonlinear Dyn. 85 (2016) 813–816. [CrossRef] [Google Scholar]
  13. M. Eslami, M. Mirzazadeh and A. Biswas, Soliton solutions of the resonant nonlinear Schrödinger’s equation in optical fibers with time dependent coefficients by simplest equation approach. J. Mod. Opt. 60 (2013) 1627–1636. [CrossRef] [Google Scholar]
  14. F. Ferdousa, M.G. Hafeza, A. Biswasb, M. Ekicid, Q. Zhoue, M. Alfirasf, S.P. Moshokoac and M. Belic, Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized exp ( − ϕ(ξ))-expansion. Optik 178 (2019) 439–448. [CrossRef] [Google Scholar]
  15. W. Gao, M. Senel, G. Yel, H.M. Baskonus and B. Senel, New complex wave patterns to the electrical transmission line model arising innetwork system. Aims. Math. 5 (2020) 1881–1892. [CrossRef] [Google Scholar]
  16. W. Gao, H. Rezazadeh, Z. Pinar, H.M. Baskonus, S. Sarwar and G. Yel, Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique. Opt. Quant. Elect. 52 (2020) 1–13. [CrossRef] [Google Scholar]
  17. D. Gianzo, J.O. Madsen, and J.S. Guilln, Integrable chiral theories in (2 + 1) dimensions, Nucl. Phys. B. 537 (1999) 586–598. [CrossRef] [Google Scholar]
  18. M. Iqbal, A.R. Seadawy, O.H. Khalil and D. Lu, Propagation of long internal waves in density stratified ocean for the (2+ 1)-dimensional nonlinear Nizhnik-Novikov-Vesselov dynamical equation. Res. Phys. 16 (2020) 102838. [Google Scholar]
  19. A. Javid and N. Raza, Chiral solitons of the (1 + 2)-dimensional nonlinear Schrodinger’s equation. Mod. Phy. Lett. B. 33 (2019) 1950401. [CrossRef] [Google Scholar]
  20. A.G. Johnpillai, A. Yildirim and A. Biswas, Chiral solitons with Bohm potential by lie group analysis and traveling wave hypothesis. Rom. J. Phys. 57 (2012) 545–554. [Google Scholar]
  21. A. Korkmaz, O.E. Hepson, K. Hosseini, H. Rezazadeh and M. Eslami, Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class. J. King Saud Univ. Sci. 32 (2018) 567–574. [CrossRef] [Google Scholar]
  22. D. Lu, A.R. Seadawy and M. Arshad, Applications of extended simple equation method on unstable nonlinear Shrodinger’s equations. Optik 140 (2017) 136–144. [CrossRef] [Google Scholar]
  23. N. Raza and A. Javid, Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrödinger’s equation. Waves Random Complex. 29 (2018) 1–13. [Google Scholar]
  24. N. Raza, U. Afzal, A.R. Butt and H. Rezazadeh, Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities. Opt. Quant. Elect. 51 (2019) 107. [CrossRef] [Google Scholar]
  25. N. Raza, M. Abdullah and A.R. Butt, Analytical soliton solutions of Biswas–Milovic equation in Kerr and non-Kerr law media. Optik 157 (2018) 993–1002. [CrossRef] [Google Scholar]
  26. N. Raza, M. Abdullah, A.R. Butt, I.G. Murtaza and S. Sial, New exact periodic elliptic wave solutions for extended quantum Zakharov-Kuznetsov equation. Opt. Quant. Elect. 50 (2018) 177. [CrossRef] [Google Scholar]
  27. N. Raza, M.R. Aslam and H. Rezazadeh, Analytical study of resonant optical solitons with variable coefficients in Kerr and non-Kerr law media. Opt Quant Elect. 51 (2019) 59. [CrossRef] [Google Scholar]
  28. N. Raza and S. Arshed, Chiral bright and dark soliton solutions of Schrödinger’s equation in (1 + 2)-dimensions. Ain. Shams. Eng. J. (2020) 1237–1241. [CrossRef] [Google Scholar]
  29. H.U. Rehman, M. Younis, S. Jafar, M. Tahir and M.S. Saleem, Optical Solitons of Biswas-Arshed Model in Birefrigent Fiber Without Four Wave Mixing. Optik 213 (2020) 164669. [CrossRef] [Google Scholar]
  30. H. Rezazadeh, A. Korkmaz, M. Eslami and S.M. Mirhosseini-Alizamini, A large family of optical solutions to Kundu Eckhaus model by a new auxiliary equation method. Opt. Quant. Elect. 51 (2019) 84. [CrossRef] [Google Scholar]
  31. K.U. Tariq, A.R. Seadawy, M. Younis and S.T.R. Rizv, Dispersive traveling wave solutions to the space–time fractional equal-width dynamical equation and its applications. Opt. Quant. Elect. 50 (2018) 147. [CrossRef] [Google Scholar]
  32. H. Triki, R.T. Alqahtani, Q. Zhou and A. Biswas, New envelope solitons for Gerdjikov-Ivanov model in nonlinear optics. Superlattices Microstruct. 111 (2017) 326–334. [CrossRef] [Google Scholar]
  33. B. Younas and M. Younis, Chirped solitons in optical monomode fibres modelled with Chen-Lee-Liu equation. Pramana - J Phys. 94 (2020) 3. [CrossRef] [Google Scholar]
  34. M. Younis, T.A. Sulaiman, M. Bilal, S.U. Rehman and U. Younas, Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation. Commun. Theor. Phys. 72 (2020) 065001. [CrossRef] [Google Scholar]
  35. M. Younis, M. Bilal, S.U. Rehman, U. Younas and S.T.R. Rizvi, Investigation of optical solitons in birefringent polarization preserving fibers with four-wave mixing effect. Int. J. Mod. Phys. B. 34 (2020) 2050113. [CrossRef] [Google Scholar]
  36. M. Younis, U. Younas, S.U. Rehman, M. Bilal and A. Waheed, Optical bright-dark and Gaussian soliton with third order dispersion. Optik 134 (2017) 233–238. [CrossRef] [Google Scholar]
  37. M. Younis, N. Cheema, S.A. Mahmood and S.T.R. Rizvi, On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential. Opt. Quant. Elect. 48 (2016) 542. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.