Open Access
Issue
Math. Model. Nat. Phenom.
Volume 16, 2021
Article Number 37
Number of page(s) 40
DOI https://doi.org/10.1051/mmnp/2021029
Published online 15 June 2021
  1. T. Ashley, E. Carrizosa and E. Fernández-Cara, Optimisation of aiming strategies in Solar Power Tower plants. Energy (2017). [Google Scholar]
  2. T. Ashley, E. Carrizosa and E. Fernández-Cara, Continuous Optimisation Techniques for Optimal Aiming Strategies in Solar Power Tower Plants (Submitted) (2018). [Google Scholar]
  3. T. Ashley, E. Carrizosa and E. Fernández-Cara, Heliostat field cleaning scheduling for Solar Power Tower plants: a heuristic approach. Appl. Energy 235 (2019) 653–660. [Google Scholar]
  4. M. Astolfi, M. Binotti, S. Mazzola, L. Zanellato and G. Manzolini, Heliostat aiming point optimization for external tower receiver. Solar Energy 157 (2017) 1114–1129. [Google Scholar]
  5. R. Braun, C. Diep, W.T. Hamilton, M.J. Wagner, J. Dent and A. Newman, Optimizing dispatch for a concentrated solar power tower. Solar Energy 174 (2018) 1198–1211. [Google Scholar]
  6. D.P. Clarke, Y.M. Al-Abdeli and G. Kothapalli, Multi-objective optimisation of renewable hybrid energy systems with desalination. Energy 88 (2015) 457–468. [Google Scholar]
  7. I. Ekeland and R. Temam, Convex analysis and variational problems. Elsevier (1976). [Google Scholar]
  8. R. Evins, A review of computational optimisation methods applied to sustainable building design. Renew. Sustain. Energy Rev. 22 (2013) 230–245. [Google Scholar]
  9. O. Farges, J.J. Bézian and M. El Hafi Global optimization of solar power tower systems using a Monte Carlo algorithm: application to a redesign of the PS10 solar thermal power plant. Renew. Energy 119 (2018) 345–353. [Google Scholar]
  10. I.V. Girsanov, Lectures on mathematical theory of extremum problems. Springer-Verlag, Berlin-New York (1972). [Google Scholar]
  11. F. Kheiri, A review on optimization methods applied in energy-efficient building geometry and envelope design. Renew. Sustain. Energy Rev. 92 (2018) 897–920. [Google Scholar]
  12. Z. Liu and H. Liu, Several efficient gradient methods with approximate optimal stepsizes for large scale unconstrained optimization. J. Comput. Appl. Math. 328 (2018) 400–413. [Google Scholar]
  13. M. Mansour and J.E. Ellis, Methodology of on-line optimization applied to a chemical reactor. Appl. Math. Model. 32 (2008) 170–184. [Google Scholar]
  14. G.P. McCormick, A modification of Armijo’s step-size rule for negative curvature. Math. Program. 13 (1977) 111–115. [Google Scholar]
  15. J. Nocedal, S.J. Wright and S.M. Robinson, Numerical Optimization, Springer, 1 ed. (1999). [Google Scholar]
  16. V. Pillac, M. Gendreau, C. Guéret and A.L. Medaglia, A review of dynamic vehicle routing problems. Eur. J. Operat. Res. 225 (2013) 1–11. [Google Scholar]
  17. S. Relloso and E. García, Tower technology cost reduction approach after Gemasolar experience. Energy Proc. 69 (2015) 1660–1666. [Google Scholar]
  18. V. Schmid, Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. Eur. J. Oper. Res. 219 (2012) 611–621. [PubMed] [Google Scholar]
  19. K. Wang, Y.-l. He, X.-d. Xue and B.-c. Du, Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm. Appl. Energy 205 (2017) 399–416. [Google Scholar]
  20. Q. Yu, Z. Wang and E. Xu, Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field. Appl. Energy 136 (2014) 417–430. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.