Open Access
Math. Model. Nat. Phenom.
Volume 16, 2021
Article Number 36
Number of page(s) 13
Published online 07 June 2021
  1. M. Adimy, Y. Bourfia, M.L. Hbid and C. Marquet, Age-structured model of hematopoiesis dynamics with growth factor-dependent coefficients. Electr. J. Differ. Equ. 2016 (2016) 1–20. [CrossRef] [Google Scholar]
  2. M. Adimy, F. Crauste and S. Ruan, Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases. Bull. Math. Biol. 68 (2006) 2321–2351. [Google Scholar]
  3. I. Badralexi, A. Halanay and R. Mghames, A delay differential equations model for maintenance therapy in acute lymphoblastic leukemia. U.P.B. Sci. Bull. Series A 82 (2020) 13–24. [Google Scholar]
  4. S. Balea, A. Halanay, D. Jardan, M. Neamtu and C.A. Safta, Stability analysis of a feedback model for the action of the immune system in leukemia. Math. Model. Nat. Phenom. 9 (2014) 108–132. [Google Scholar]
  5. R. Bellman and K.L. Cooke, Differential-Difference Equations. Academic Press, New York (1963). [Google Scholar]
  6. P. Birget, M. Greischar, S. Reece and N. Mideo, Altered life history strategies protect malaria parasites against drugs. Evolut. Appl. 2017 (2017) 1–14. [Google Scholar]
  7. C. Colijn and M.C. Mackey, A mathematical model for hematopoiesis: I. Periodic chronic myelogenous leukemia. J. Theor. Biol. 237 (2005) 117–132. [Google Scholar]
  8. L.E. El’sgol’ts and S.B. Norkin, Introduction to the theory of differential equations with deviating arguments (in Russian). Nauka, Moscow (1971). [Google Scholar]
  9. A. Halanay, Differential Equations. Stability, Oscillations, Time Lags. Academic Press, New York (1966). [Google Scholar]
  10. A. Halanay, D. Candea and R. Radulescu, Existence and stability of limit cycles in a two-delays model of hematopoiesis including asymmetric division. Math. Model. Nat. Phenom. 9 (2014) 58–78. [Google Scholar]
  11. J. Hale and S.M. Verduyn-Lunel, Introduction to Functional Differential Equations. Springer, New York (1993). [Google Scholar]
  12. D.H. Kerlin and M.L. Gatton, Preferential Invasion by Plasmodium Merozoites and the Self-Regulation of Parasite Burden. PLoS ONE 8 (2013) e57434. [Google Scholar]
  13. V.L. Kharitonov and A.P. Zhabko, Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems. Automatica 39 (2003) 15–20. [Google Scholar]
  14. V.L. Kharitonov, Time Delay Systems: Lyapunov Functionals and Matrices. Birkhäuser, Basel (2013). [Google Scholar]
  15. N. Khodzhaeva, A. Baranova and A. Tokmalaev, The immunological Plasmodium falciparum malaria characteristics of children in Tajikistan Republic. Hindawi J. Tropical Med. 2019 (2019) Article ID 5147252. [Google Scholar]
  16. P. Kim, P. Lee and D. Levy, A theory of immunodominance and adaptive regulation. Bull. Math. Biol. 73 (2011) 1645–1665. [Google Scholar]
  17. B. Ma, C. Li and J. Warner, Structured mathematical models to investigate the interactions between Plasmodium falciparum malaria parasites and host immune response. Math. Biosci. 310 (2019) 65–75. [Google Scholar]
  18. I.G. Malkin, Theory of stability of motion (in Russian), Nauka, Moskow (1966) English translation: Atomic Energy Comm. Translation AEC-TR-3352. [Google Scholar]
  19. G. Molineux, M. Foote and S. Elliott, Erythropoiesis and Eythropoietins. Second Edition Birkhauser (2009). [Google Scholar]
  20. C. Tomasetti and D. Levi, Role of symmetric and asymmetric division of stem cells in developing drug resistance. PNAS 17 (2010) 16766–16771. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.