Issue
Math. Model. Nat. Phenom.
Volume 16, 2021
Coronavirus: Scientific insights and societal aspects
Article Number 31
Number of page(s) 15
DOI https://doi.org/10.1051/mmnp/2021025
Published online 02 June 2021
  1. R.M. Anderson and R.M. May, Infectious Diseases of Humans. Oxford University Press (1991). [Google Scholar]
  2. F. Brauer and C. Castillo-Chavezv, Mathematical Models in Population Biology and Epidemiology. Springer (2001). [Google Scholar]
  3. De Chang et al., Time kinetics of viral clearance and resolution of symptoms in novel coronavirus infection. Am. J. Respirat. Critical Care Med. 201 (2020) 1150–1152. [Google Scholar]
  4. O. Diekmann and J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley (2000). [Google Scholar]
  5. O. Diekmann, J.A.P. Heesterbeek and J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28 (1990) 365–382. [Google Scholar]
  6. O. Diekmann and J.A.P. Heesterbeek, Mathematical epidemiology of infectious diseases : model building, analysis and interpretation. Wiley (2000). [Google Scholar]
  7. V. Gupta, R.C. Bhoyar, A. Jain, S. Srivastava, R. Upadhayay, M. Imran et al., Asymptomatic reinfection in two healthcare workers from India with genetically distinct SARS-CoV-2 (2020). Available from: https://osf.io/4fmrg/. [Google Scholar]
  8. W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 115 (1927) 700–721. [Google Scholar]
  9. L. Lan, D. Xu, G. Ye et al., Positive RT-PCR test results in patients recovered from COVID-19. JAMA 323 (2020) 1502–1503. [Google Scholar]
  10. F.N. Ngoteya and Y.N. Gyekye, Sensitivity analysis of parameters in a competition model. Appl. Comput. Math. 4 (2015) 363–368. [Google Scholar]
  11. I. Petersen and A. Phillips, Three quarters of people with SARS-CoV-2 infection are asymptomatic: analysis of English household survey data. Clin. Epidemiol. 12 (2020) 1039–1043. [Google Scholar]
  12. B. Prado-Vivar, M. Becerra-Wong, J.J. Guadalupe, S. Marquez, B. Gutierrez, P. Rojas-Silva et al., COVID-19 ReInfection by a Phylogenetically Distinct SARS-CoV-2 Variant, First Confirmed Event in South America. SSRN (2020). [Google Scholar]
  13. F.A. Rihan, H.J. Alsakaji and C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for COVID-19. Adv Differ Equ. 2020 (2020) 502. [Google Scholar]
  14. F.A. Rihan and H.J. Alsakaji, Persistence and extinction for stochastic delay differential model of prey predator system with hunting cooperation in predators. Adv. Differ. Equ. 2020 (2020) 124. [Google Scholar]
  15. R. Tillett et al., Genomic evidence for a case of reinfection with SARS-CoV-2. SSRN Electr. J. 3099 (2020) 1–7. [Google Scholar]
  16. K.K.-W. To, I.F.-N. Hung, J.D. Ip, A.W.-H. Chu, W.-M. Chan, A.R. Tam et al., COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin. Infectious Dis. (2020). [Google Scholar]
  17. J. Van Elslande, P. Vermeersch, K. Vandervoort, T. Wawina-Bokalanga, B. Vanmechelen, E. Wollants et al., Symptomatic SARS-CoV-2 reinfection by a phylogenetically distinct strain. Clin. Infectious Dis. (2020). [Google Scholar]
  18. P. Van Den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 (2002) 29–48. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.