Cancer modelling
Open Access
Issue
Math. Model. Nat. Phenom.
Volume 16, 2021
Cancer modelling
Article Number 56
Number of page(s) 15
DOI https://doi.org/10.1051/mmnp/2021048
Published online 14 October 2021
  1. P.T. Caswell and T. Zech, Actin-based cell protrusion in a 3d matrix. Trends Cell Biol. 28 (2018) 823–834. [PubMed] [Google Scholar]
  2. R. Folch, J. Casademunt and A. Hernandez-Machado, Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. theoretical approach. Phys. Rev. E 60 (1999) 1724. [CrossRef] [Google Scholar]
  3. M. Abu Hamed and A. Nepomnyashchy, Dynamics of curved fronts in systems with power-law memory. Physica D 328–329 (2016) 1–8. [Google Scholar]
  4. M. Abu Hamed and A. Nepomnyashchy, A simple model of keratocyte membrane dynamics: the case of motionless living cell. Physica D 408 (2020) 132465. [Google Scholar]
  5. J. Happel and H. Brenner, Low Reynolds number hydrodynamics. Martinus Nijhoff Publisher (1983). [Google Scholar]
  6. K. Keren, Z. Pincus, G.M. Allen, E.L. Barnhart, G. Marriott, A. Mogilner and J.A. Theriot, Mechanism of shape determination in motile cells. Nature 453 (2008) 475–480. [CrossRef] [PubMed] [Google Scholar]
  7. M.H. Maiand B.A. Camley, Hydrodynamic effects on the motility of crawling eukaryotic cells. Soft Matter 16 (2020) 1349–1358. [PubMed] [Google Scholar]
  8. P.K. Mattila and P. Lappalainen, Filopodia: molecular architecture and cellular functions. Nature Publishing Group 9 (2008) 446–454. [Google Scholar]
  9. A. Mogilner, Mathematics of cell motility: have we got its number?. Math. Biol. 58 (2008) 105–134. [Google Scholar]
  10. A. Mogilner, E.L. Barnhart and K. Keren, Experiment, theory, and the keratocyte: an ode to a simple model for cell motility. Seminarsin Cell Dev. Biol. 100 (2020) 143–151. [Google Scholar]
  11. D.K. Schlüter, I.R. Conde and M.A.J. Chaplain, Computational modeling of single-cell migration: the leading role of extracellular matrix fibers. Biophys. J. 103 (2012) 1141–1151. [PubMed] [Google Scholar]
  12. E. Tjhung, A. Tiribocchi, D. Marenduzzo and M. Cates, A minimal physical model captures the shapes of crawling cells. Nat. Commun. 6 (2015) 5420. [PubMed] [Google Scholar]
  13. B. Winkler, I.S. Aranson and F. Ziebert, Confinement and substrate topography control cell migration in a 3d computational model. Commun. Phys. 2 (2019) 82. [Google Scholar]
  14. P.H. Wu, D.M. Gilkes and D. Wirtz, Annual review of biophysics: the biophysics of 3d cell migration. Annu. Rev. Biophys. 47 (2018) 549–567. [Google Scholar]
  15. M.H. Zaman, R.D. Kamm, P. Matsudaira and D.A. Lauffenburger, Computational model for cell migration in three-dimensional matrices. Biophys. J. 89 (2005) 1389–1397. [PubMed] [Google Scholar]
  16. F. Ziebert and I.S. Aranson, Modular approach for modeling cell motility. Eur. Phys. J. Special Topics 223 (2014) 1265–1277. [CrossRef] [EDP Sciences] [Google Scholar]
  17. F. Ziebert and I.S. Aranson, Computational approaches to substrate-based cell motility. npj Comput. Mater. 2 (2016) 16019. [Google Scholar]
  18. F. Ziebert, S. Swaminathan and I.S. Aranson, Model for self-polarization and motility of keratocyte fragments. J. R. Soc. Interface 9 (2012) 1084–1092. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.