Issue
Math. Model. Nat. Phenom.
Volume 16, 2021
Mathematical Models and Methods in Epidemiology
Article Number 55
Number of page(s) 15
DOI https://doi.org/10.1051/mmnp/2021047
Published online 12 October 2021
  1. J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44 (1975) 331–340. [Google Scholar]
  2. Z. Chen, Z. Tian, S. Zhang and C. Wei, The stationary distribution and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton under regime switching. Physica A 537 (2020) 122728. [CrossRef] [Google Scholar]
  3. N.T. Dieu, T. Fugo and N.H. Du, Asymptotic behaviors of stochastic epidemic models with jump-diffusion. Appl. Math. Model. 86 (2020) 259–270. [CrossRef] [Google Scholar]
  4. N.H. Du, N.T. Dieu and N.N. Nhu, Conditions for permanence and ergodicity of certain SIR epidemic models. Acta Appl. Math. 160 (2019) 81–99. [CrossRef] [Google Scholar]
  5. A. El Koufi, A. Bennar, N. El Koufi and N. Yousfi, Asymptotic properties of a stochastic SIQR epidemic model with Lévy Jumps and Beddington-DeAngelis incidence rate. Results Phys. 27 (2021) 104472. [CrossRef] [Google Scholar]
  6. A. El Koufi, J. Adnani, A. Bennar and N. Yousfi, Analysis of a stochastic SIR model with vaccination and nonlinear incidence rate. Int. J. Diff. Equat. 2019 (2019). [Google Scholar]
  7. Z. Han and J. Zhao, Stochastic SIRS model under regime switching. Nonlinear Anal-Real. 14 (2013) 352–364. [CrossRef] [Google Scholar]
  8. P. Han, Z. Chang and X. Meng, Asymptotic dynamics of a stochastic sir epidemic system affected by mixed nonlinear incidence rates. Complexity 2020 (2020). [Google Scholar]
  9. H. Hethcote, M. Zhien and L. Shengbing, Effects of quarantine in six endemic models for infectious diseases. Math. Biosci. 180 (2002) 141–160. [PubMed] [Google Scholar]
  10. D.J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43 (2001) 525–546. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Huo, J. Jiang, S. Gong and B. He, Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event. Physica A 450 (2016) 228–240. [CrossRef] [Google Scholar]
  12. M.N. Jan, N. Ali, G. Zaman, I. Ahmad, Z. Shah and P. Kumam, HIV-1 infection dynamics and optimal control with Crowley-Martin function response. Comput. Meth. Prog. Biol. 193 (2020) 105503. [CrossRef] [Google Scholar]
  13. D. Jiang, J. Yu, C. Ji and N. Shi, Asymptotic behavior of global positive solution to a stochastic SIR model. Math. Comput. Model. 54 (2011) 221–232. [CrossRef] [Google Scholar]
  14. W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics (part I). Proc. R. Soc. Lond. Ser. A 115 (1927) 700–721. [CrossRef] [Google Scholar]
  15. A.E. Koufi, A. Bennar and N. Yousfi, Dynamics of a stochastic SIRS epidemic model with regime switching and specific functional response. Discr. Dyn. Nat. Soc. 2020 (2020). [Google Scholar]
  16. M.A. Khan, Y. Khan and S. Islam, Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment. Physica A 493 (2018) 210–227. [CrossRef] [Google Scholar]
  17. R. Khasminskii, Stochastic stability of differential equations. Springer Science Business Media (2011). [Google Scholar]
  18. G. Lan, Z. Lin, C. Wei and S. Zhang, A stochastic SIRS epidemic model with non-monotone incidence rate under regime-switching. J. Frankl. Inst. 356 (2019) 9844–9866. [CrossRef] [Google Scholar]
  19. G. Lan, Z. Lin, C. Wei and S. Zhang, A stochastic SIRS epidemic model with non-monotone incidence rate under regime-switching. J. Frankl. Inst. 356 (2019) 9844–9866. [CrossRef] [Google Scholar]
  20. Y. Lin, L. Wang and X. Dong, Long-time behavior of a regime-switching SIRS epidemic model with degenerate diffusion. Physica A 529 (2019) 121551. [CrossRef] [Google Scholar]
  21. T. Li, F. Zhang, H. Liu and Y. Chen, Threshold dynamics of an SIRS model with nonlinear incidence rate and transfer from infectious to susceptible. Appl. Math. Lett. 70 (2017) 52–57. [CrossRef] [Google Scholar]
  22. Y. Liu, Y. Zhang and Q. Wang, A stochastic SIR epidemic model with Lévy jump and media coverage. Adv. Differ. Equ-Ny. 2020 (2020) 1–15. [CrossRef] [Google Scholar]
  23. Q. Liu and D. Jiang, Threshold behavior in a stochastic SIR epidemic model with Logistic birth. Physica A 540 (2020) 123488. [CrossRef] [Google Scholar]
  24. Q. Liu, D. Jiang, T. Hayat, A. Alsaedi and B. Ahmad, A stochastic SIRS epidemic model with logistic growth and general nonlinearincidence rate. Physica A 551 (2020) 124–152. [Google Scholar]
  25. X. Mao and C. Yuan, Stochastic differential equations with Markovian switching. Imperial College Press (2006). [CrossRef] [Google Scholar]
  26. X. Mao, G. Marion and E. Renshaw, Environmental noise suppresses explosion in population dynamics. Stoch. Process. Appl. 97 (2002) 95–110. [CrossRef] [Google Scholar]
  27. D. Nguyen, N. Nguyen and G. Yin, Analysis of a spatially inhomogeneous stochastic partial differential equation epidemic model. J.Appl. Probab. 57 (2020) 613–636. [CrossRef] [Google Scholar]
  28. N.D. Phu, D. O’Regan and T.D. Tuong, Longtime characterization for the general stochastic epidemic SIS model under regime-switching. Nonlinear. Anal-Hybri. 38 (2020) 100951. [CrossRef] [Google Scholar]
  29. N.D. Phu, D. O’Regan and T.D. Tuong, Longtime characterization for the general stochastic epidemic SIS model under regime-switching. Nonlinear. Anal-Hybri. 38 (2020) 100951. [CrossRef] [Google Scholar]
  30. M. Pitchaimani, Stochastic dynamical probes in a triple delayed SICR model with general incidence rate and immunization strategies. Chaos. Soliton. Fractals 143 (2021) 110540. [CrossRef] [Google Scholar]
  31. S.P. Rajasekar, M. Pitchaimani and Q. Zhu, Progressive dynamics of a stochastic epidemic model with logistic growth and saturatedtreatment. Physica A 538 (2020) 122649. [CrossRef] [Google Scholar]
  32. R. Rifhat, A. Muhammadhaji and Z. Teng, Asymptotic properties of a stochastic SIRS epidemic model with nonlinear incidence and varying population sizes. Dyn. Syst. 35 (2020) 56–80. [CrossRef] [Google Scholar]
  33. R. Rifhat, L. Wang and Z. Teng, Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients. Physica A 481 (2017) 176–190. [CrossRef] [Google Scholar]
  34. S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equ. 188 (2003) 135–163. [CrossRef] [MathSciNet] [Google Scholar]
  35. T. Tang, Z. Teng and Z. Li, Threshold behavior in a class of stochastic SIRS epidemic models with nonlinear incidence. Stoch. Anal. Appl. 33 (2015) 994–1019. [CrossRef] [Google Scholar]
  36. T.D. Tuong, D.H. Nguyen, N.T. Dieu and K. Tran, Extinction and permanence in a stochastic SIRS model in regime-switching with general incidence rate. Nonlinear. Anal-Hybri. 34 (2019) 121–130. [CrossRef] [Google Scholar]
  37. C. Xu and X. Li, The threshold of a stochastic delayed SIRS epidemic model with temporary immunity and vaccination. Chaos. Solitons. Fract. 111 (2018) 227–234. [CrossRef] [Google Scholar]
  38. Q. Yan, Y. Tang, D. Yan, J. Wang, L. Yang, X. Yang and S. Tang, Impact of media reports on the early spread of COVID-19 epidemic. J. Theor. Biol. 502 (2020) 110385. [PubMed] [Google Scholar]
  39. X. Yu, S. Yuan and T. Zhang, Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching. Commun. Nonlinear. Sci. Numer. Simulat. 59 (2018) 359–374. [CrossRef] [Google Scholar]
  40. X.B. Zhang, H.F. Huo, H. Xiang, Q. Shi and D. Li, The threshold of a stochastic SIQS epidemic model. Physica A 482 (2017) 362–374. [CrossRef] [Google Scholar]
  41. Y. Zhang, K. Fan, S. Gao, Y. Liu and S. Chen, Ergodic stationary distribution of a stochastic SIRS epidemic model incorporating media coverage and saturated incidence rate. Physica A 514 (2019) 671–685. [CrossRef] [Google Scholar]
  42. X.B. Zhang and X.H. Zhang, The threshold of a deterministic and a stochastic SIQS epidemic model with varying total population size. Appl. Math. Model. 91 (2021) 749–767. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.