Open Access
Math. Model. Nat. Phenom.
Volume 17, 2022
Article Number 36
Number of page(s) 21
Published online 02 September 2022
  1. R. Arditi and L.R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139 (1989) 311–326. [CrossRef] [Google Scholar]
  2. M. Banerjee and S. Petrovskii, Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system. Theoret. Ecol. 4 (2010) 37–53. [Google Scholar]
  3. J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44 (1975) 331–340. [CrossRef] [Google Scholar]
  4. A.P. Bonney, Phytoplankton. Edward Arnold, London (1975), p. 212. [Google Scholar]
  5. S. Busenberg, S.K. Kumar, P. Austin and G. Wake, The dynamics of a model of plankton-nutrient interaction. Bull. Math. Biol. 52 (1990) 677–696. [CrossRef] [Google Scholar]
  6. D.L. DeAngelis, R.A. Goldstein and O'R.V. Neill, A model for trophic interaction. Ecology 4 (1975) 881–892. [CrossRef] [Google Scholar]
  7. C.A. Edwards, H.P. Batchelder and T.M. Powell, Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system. J. Plankton Res. 22 (2000) 1619–1648. [CrossRef] [Google Scholar]
  8. G.T. Evans and J.S. Parslow, A model of annual plankton cycles. Biol. Oceanogr. 3 (1985) 327–347. [Google Scholar]
  9. M.J.R. Fasham, Modelling the marine biota, in: The Global Carbon Cycle, edited by M. Heimann. Springer-Verlag, Berlin (1993) 457–504. [CrossRef] [Google Scholar]
  10. R.A. Fisher, The wave of advance of advantageous genes. Ann. Eugenics 7 (1937) 355–369. [CrossRef] [Google Scholar]
  11. P.J.S. Franks, J.S. Wroblewski and G.R. Flierl, Behavior of a simple plankton model with food-level acclimation by herbivores. Mar. Biol. 91 (1986) 121–129. [CrossRef] [Google Scholar]
  12. R.V. Fursenko, K.L. Pan and S.S. Minaev, Noise influence on pole solutions of the Sivashinsky equation for planar and outward propagating flames. Phys. Rev. E 78 (2008) 056301. [CrossRef] [PubMed] [Google Scholar]
  13. R. Fursenko, S. Minaev, H. Nakamura, T. Tezuka, S. Hasegawa, K. Takase, X. Li, M. Katsuta, M. Kikuchi and K. Maruta, Cellular and sporadic flame regimes of low-Lewis-number stretched premixed flames. Proc. Combust. Inst. 34 (2013) 981–988. [CrossRef] [Google Scholar]
  14. A.R. Kerstein, W.T. Ashurst and F.A. Williams, Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A 37 (1988) 2728. [CrossRef] [PubMed] [Google Scholar]
  15. W.W. Gregg and M.E. Conkright, Decadal changes in global ocean chlorophyll. Geophys. Res. Lett. 29 (2002) 17–30. [Google Scholar]
  16. R. Han and B. Dai, Cross-diffusion induced turing instability and amplitude equation for a toxic-phytoplankton-zooplankton model with nonmonotonic functional response. Int. J. Bifurc. Chaos 6 (2017) 1750088. [CrossRef] [Google Scholar]
  17. A.N. Kolmogorov, I.G. Petrovsky and N.S. Piskunov, Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem. Bull. Moscow State Univ. Ser. A 1 (1937) 1–25. [Google Scholar]
  18. C.E. Lucas, The ecological effects of external metabolites. Biol. Rev. Cambr. Philo. Soc. 22 (1947) 270–295. [CrossRef] [Google Scholar]
  19. H. Malchow, Nonlinear plankton dynamics and pattern formation in an ecohydrodynamic model system. J. Mar. Syst. 7 (1996) 193–202. [CrossRef] [Google Scholar]
  20. G.H. Markstein, Nonsteady Flame Propagation. Pergamon Press, Oxford (1964). [Google Scholar]
  21. G.A. Riley, Theoretical analysis of the zooplankton population of Georges Bank. J. Mar. Res. 6 (1947) 104–113. [Google Scholar]
  22. S. Roy, D.S. Broomhead, T. Platt, S. Sathyendranath and S. Ciavatta, Sequential variations of phytoplankton growth and mortality in an NPZ model: a remote-sensing-based assessment. J. Mar. Syst. 92 (2012) 16–29. [CrossRef] [Google Scholar]
  23. L. Segel, Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37 (1972) 545–559. [CrossRef] [Google Scholar]
  24. Yu.M. Svirezhev, Nonlinearity in mathematical ecology: phenomena and models. Would we live in Volterra’s world? Ecol. Model. 216 (2008) 89–101. [CrossRef] [Google Scholar]
  25. J.C. Tannehill, R.H. Pletcher and D.A. Anderson, Computational fluid mechanics and heat transfer. Taylor & Francis, Bristol, PA (1997). [Google Scholar]
  26. R.V. Thomann, D.M. Di Toro, R.P. Winfield and O’D.J. Connor, Mathematical modeling of phytoplankton in Lake Ontario. Model development and verification. EPA- 660/3-75-005, Ecological Research Series (1975) 177. [Google Scholar]
  27. Yu.V. Tyutyunov and L.I. Titova, From Lotka—Volterra to Arditi—Ginzburg: 90 years of evolving trophic functions. Biol. Bull. Rev. 10 (2020) 167–185. [CrossRef] [Google Scholar]
  28. R. Upadhyay, V. Volpert and N. Thakur, Propagation of Turing patterns in a plankton model. J. Biolog. Dyn. 6 (2012) 524–538. [CrossRef] [PubMed] [Google Scholar]
  29. F.A. Williams, Combustion theory. CRC Press (1985) 708. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.