Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 17, 2022
|
|
---|---|---|
Article Number | 37 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/mmnp/2022025 | |
Published online | 02 September 2022 |
- B. Albers, On results of the surface wave analyses in poroelastic media by means of the simple mixture model and the Biot model. Soil Dyn Earthq Eng. 26 (2006) 537–547. [CrossRef] [Google Scholar]
- A. Arora, A. Painuley and S.K. Tomar, Body waves in composite solid matrix containing two immiscible fluids. Transp Porous Med. 108 (2015) 531–554. [CrossRef] [Google Scholar]
- A. Arora, N. Bala and S.K. Tomar, A mathematical model for wave propagation in a composite solid matrix containing two immiscible fluids. Acta Mech. 227 (2016) 1453–1467. [CrossRef] [MathSciNet] [Google Scholar]
- R.D. Borcherdt, Rayleigh-type surface wave on a linear viscoelastic half-space. J Acoust Soc Am. 54 (1973) 651–653. [Google Scholar]
- J.M. Carcione, Rayleigh waves in isotropic viscoelastic media. Geophys. J. Int. 108 (1992) 453–464. [CrossRef] [Google Scholar]
- A. Colombi, P. Roux, D.J. Colquitt, S. Guenneau, V. Ageeva, M. Clark and R. Craster, New frontiers in elastic metamaterials for controlling surface waves. J Acoust Soc Am. 140 (2016) 3103–3103. [CrossRef] [Google Scholar]
- P.K. Currie, M.A. Hayes and O’P.M. Leary, Viscoelastic Rayleigh waves. Q Appl Math. 35 (1977) 35–53. [CrossRef] [Google Scholar]
- P.K. Currie and O’P.M. Leary, Viscoelastic Rayleigh waves II. Q Appl Math. 36 (1978) 445–454. [CrossRef] [Google Scholar]
- P.K. Currie, Viscoelastic surface waves on a standard linear solid. Q Appl Math. 37 (1979) 332–336. [CrossRef] [Google Scholar]
- Z. Dai, Z. Kuang and S. Zhao, Rayleigh waves in a double porosity half-space. J. Sound Vib. 298 (2006) 319–332. [CrossRef] [Google Scholar]
- H. Deresiewicz, The effect of boundaries on wave propagation in a liquid-filled porous solid-IV. Surface waves in a half-space. Bull Seismol Soc Am. 52 (1962) 627–638. [CrossRef] [Google Scholar]
- F. Ebrahimi (Ed.), Surface waves: New trends and developments. IntechOpen, London (2018). [Google Scholar]
- W.M. Ewing and W.S. Jardetzky, Elastic waves in layered media. Frank Press, McgrawHill, New York (1957). [Google Scholar]
- S. Foti, C.G. Lai, G.J. Rix and C. Strobbia, Surface wave methods for near surface site characterization. CRC Press, Taylor & Francis Group, New York (2015). [Google Scholar]
- S. Gupta and M. Ahmed, Influence of prestress and periodic corrugated boundary surfaces on Rayleigh waves in an orthotropic medium over a transversely isotropic dissipative semi infinite substrate. Eur. Phys. J Plus. 132 (2017). doi: 10.1140/epjp/i2017-11282-6 [CrossRef] [Google Scholar]
- J.P. Jones, Rayleigh waves in a porous, elastic, saturated solid. J. Acoust. Soc. Am. 33 (1961) 959–962. [CrossRef] [Google Scholar]
- A. Kumari, S. Kundu and S. Gupta, Propagation and attenuation characteristics of Rayleigh waves induced due to irregular surface in liquid-saturated micropolar porous half-space. Eur. Phys. J. Plus. 134 (2019) 576. [CrossRef] [Google Scholar]
- P. Leclaire, F. Cohen-Tenoudji and J. Aguirre-Puente, Extension of Biot’s theory of wave propagation to frozen porous media. J Acoust Soc Am. 96 (1994) 3753–3768. [CrossRef] [Google Scholar]
- W.C. Lo, G. Sposito and E. Majer, Wave propagation through elastic porous media containing two immiscible fluids. Water Resource Res. 41 (2005) 1–20. [Google Scholar]
- W.C. Lo, Propagation and attenuation of Rayleigh waves in a semi-infinite unsaturated poroelastic medium. Adv Water Resour 31 (2008) 1399–1410. [CrossRef] [Google Scholar]
- Z. Lu, Feasibility of using a seismic surface wave method to study seasonal and weather effects on shallow surface soils, J. Environ. Eng. Geophys. 19 (2014) 71–85. [CrossRef] [Google Scholar]
- G.D. Moro, Surface Wave Analysis for Near Surface Applications. Elsevier, Amsterdam (2015). [Google Scholar]
- I.Z. Nenadic, M.W. Urban, M. Bernal and J.F. Greenleaf, Phase velocities and attenuations of shear, Lamb, and Rayleigh waves in plate-like tissues submerged in a fluid (L). J. Acoust. Soc. Am. 130 (2011) 3549. [CrossRef] [PubMed] [Google Scholar]
- H. Omrani, L. Hassini, A. Benazzouk, H. Beji and A. ELCafsi, Elaboration and characterization of clay-sand composite based on Juncus acutus fibers. Const Build Mat. 238 (2020) 117712. [CrossRef] [Google Scholar]
- A. Painuley and A. Arora, Rayleigh wave at composite porous half space saturated by two immiscible fluids. Appl. Math. Model. 73 (2019) 124–135. [CrossRef] [MathSciNet] [Google Scholar]
- M. Romeo, Rayleigh waves on a viscoelastic solid half-space. J. Acous. Soc. Am. 110 (2001) 59–67. [CrossRef] [Google Scholar]
- M. D. Sharma, Propagation of Rayleigh waves at the boundary of an orthotopic elastic solid: influence of initial stress and gravity. J. Vib. Cont. 26 (2020) 2070–2080. [CrossRef] [Google Scholar]
- M.D. Sharma, Propagation of Rayleigh waves at the boundary of an orthotropic elastic solid: influence of initial stress and gravity. J. Vib. Cont. (2022) 1203–1214. [Google Scholar]
- P. Singh, A. Chattopadhyay and A.K. Singh, Rayleigh-type wave propagation in incompressible visco-elastic media under initial stress. Appl Math. Mech. 39 (2018) 317–334. [CrossRef] [MathSciNet] [Google Scholar]
- K. Tokeshi, P. Harutoonian, C.J. Leo and S. Liyanapathirana, Use of surface waves for geotechnical engineering applications in Western Sydney, Adv. Geosci. 35 (2013) 37–44. [CrossRef] [Google Scholar]
- N. Vasiliev, A.D.C. Pronk, I.N. Shatalina and F.H.M.E. Janssen, A review on the development of reinforced ice for use as a building material in cold regions. Cold Reg. Sci. Tech. 115 (2015) 115. [Google Scholar]
- P.C. Vinh, A. Aoudia and P.T.H. Giang, Rayleigh waves in orthotropic fluid-saturated porous media. Wave Motion. 61 (2016) 73–82. [CrossRef] [MathSciNet] [Google Scholar]
- X. Yang and Y. Xueyi, Estimating parameters of Van Genuchten model for soil water retention curve by intelligent algorithm. Appl. Math. Inf. Sci. 7 (2013) 1977–1983. [CrossRef] [Google Scholar]
- O.Z. Yilmaz, Engineering seismology with applications to geotechnical engineering. Society of Exploration Geophysicists. Tulsa (2015). doi: 10.1190/1.9781560803300 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.