Math. Model. Nat. Phenom.
Volume 17, 2022
Modelling and Simulations of Fluid Flows
Article Number 19
Number of page(s) 31
Published online 11 July 2022
  1. S. Agarwal, P. Tran, Y. Soong, D. Martello and R.K. Gupta, Flow Behavior of Nanoparticle Stabilized Drilling Fluids and Effect of High Temperature Aging, AADE National Technical Conference and Exhibition, Houston, USA, 12-14 April (2011) AADE-11-NCTE-3. [Google Scholar]
  2. S. Akhtar, L.B. McCash, S. Nadeem, S. Saleem and A. Issakhov, Mechanics of non-Newtonian blood flow in an artery having multiple stenosis and electroosmotic effects. Sci. Prog. 104 (2021) 1–15. [Google Scholar]
  3. J. Akram and N.S. Akbar, Biological analysis of Carreau nanofluid in an endoscope with variable viscosity. Phys. Scr. 95 (2020) 055201. [CrossRef] [Google Scholar]
  4. J. Akram, N.S. Akbar and D. Tripathi, Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: a Sutterby fluid model. Microvasc. Res. 132 (2020) 104062. [CrossRef] [Google Scholar]
  5. J. Akram, N.S. Akbar and D. Tripathi, Thermal analysis on MHD flow of ethylene glycol-based BNNTs nanofluids via peristaltically induced electroosmotic pumping in a curved microchannel. Arab. J. Sci. Eng. (2021). [Google Scholar]
  6. J. Akram, N.S. Akbar and D. Tripathi, Electroosmosis augmented MHD peristaltic transport of SWCNTs suspension in aqueous media. J. Therm. Anal. Calorim. (2021). [Google Scholar]
  7. A. Aziz and M. Shams, Entropy generation in MHD Maxwell-nanofluid flow with variable thermal conductivity, thermal radiation, slip conditions, and heat source. AIP Adv. 10 (2020) 015038. [Google Scholar]
  8. N. Bjorndalen and E. Kuru, Stability of microbubble-based drilling fluids under downhole conditions. J. Can. Pet. Technol. 47 (2008) 40–47. [Google Scholar]
  9. T. Brookey, “Micro-Bubbles”: new Aphron drill-in fluid technique reduces formation damage in horizontal wells. Surgery 61 (1998) 89–93. [Google Scholar]
  10. S. Chakraborty, Augmentation of peristaltic microflows through electro-osmotic mechanisms. J. Phys. D: Appl. Phys. 39 (2006) 5356–5363. [CrossRef] [Google Scholar]
  11. S.U. Choi, Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows. J. Heat Transfer 66 (1995) 99–105. [Google Scholar]
  12. K. Ehsan, T. Shahin and A. Ali, Rheological properties of Aphron based drilling fluids. Petrol. Explor. Develop. 43 (2016) 1076–1081. [CrossRef] [Google Scholar]
  13. P. Goswami, J. Chakraborty, A. Bandopadhyay and S. Chakraborty, Electrokinetically modulated peristaltic transport of power-law fluids. Microvasc. Res. 103 (2016) 41–54. [CrossRef] [Google Scholar]
  14. F.B. Growcock, A. Belkin, M. Fosdick, M. Irving, B. O’Connor and T. Brookey, Recent advances in aphron drilling fluid technology. SPE Drill. & Compl. 22 (2007) 74–80. [CrossRef] [Google Scholar]
  15. H. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Strome in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche, Ann. Phys. 165 (1853) 211–233. [CrossRef] [Google Scholar]
  16. S. Nadeem, W. Fuzhang, F.M. Alharbi, F. Sajid, N. Abbas, A.S. El-Shafay and F.S. Al-Mubaddel, Numerical computations for Buongiorno nanofluid model on the boundary layer flow of viscoelastic fluid towards a nonlinear stretching sheet. Alex. Eng. J. 61 (2022) 1769–1778. [CrossRef] [Google Scholar]
  17. S. Nadeem, M.N. Kiani, A. Saleem and A. Issakhov, Microvascular blood flow with heat transfer in a wavy channel having electroosmotic effects. Electrophoresis 41 (2020) 1198–1205. [CrossRef] [PubMed] [Google Scholar]
  18. M.K. Nayak, R. Mehmood, O.D. Makinde, O. Mahian and A.J. Chamkha, Magnetohydrodynamic flow, and heat transfer impact on ZnO-SAE50 nanolubricant flow over an inclined rotating disk. J. Cent. South Univ. 26 (2019) 1146–1160. [CrossRef] [Google Scholar]
  19. A.M. Paiaman and B.D. Al-Anazi, Feasibility of decreasing pipe sticking probability using nanoparticles. NAFTA 60 (2009) 645–647. [Google Scholar]
  20. S. Ponmani, R. Nagarajan and J.S. Sangwai, Effect of nanofluids of CuO and ZnO in polyethylene glycol and polyvinylpyrrolidone on the thermal, electrical, and filtration-loss properties of water-based drilling fluids. SPE J. 21 (2016) 405–415. [CrossRef] [Google Scholar]
  21. C. Rajashekhar, F. Mebarek-Oudina, I.E. Sarris, H. Vaidya, K.V. Prasad, G. Manjunatha and H. Balachandra, Impact of electroosmosis and wall properties in modelling peristaltic mechanism of a Jeffrey liquid through a microchannel with variable fluid properties. Inventions 6 (2021) 73. [CrossRef] [Google Scholar]
  22. K. Ramesh, D. Tripathi, M.M. Bhatti and C.M. Khalique, Electro-osmotic flow of hydromagnetic dusty viscoelastic fluids in a microchannel propagated by peristalsis. J. Mol. Liq. 314 (2020) 113568. [CrossRef] [Google Scholar]
  23. A. Ramos, H. Morgan, N.G. Green, A. González and A. Castellanos, Pumping of liquids with traveling-wave electroosmosis. J. Appl. Phys. 97 (2005) 084906. [CrossRef] [Google Scholar]
  24. M.M. Rashidi, M. Ali, N. Freidoonimehr, B. Rostami and M.A. Hossain, Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation. Adv. Mech. Eng. 2014 (2014) 735939 10 pages. [CrossRef] [Google Scholar]
  25. A.B. Rea, E.C. Alvis, B.P. Paiuk, J.M. Climaco, M. Vallejo, E. Leon and J. Inojosa, Application of Aphron technology in drilling depleted mature fields. SPE Lat. Am. Caribb. Pet. Eng. (2003) SPE-81082-MS. [Google Scholar]
  26. C.L. Rice and R. Whitehead, Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69 (1965) 4017–4024. [CrossRef] [Google Scholar]
  27. S. Saleem, S. Akhtar, S. Nadeem, A. Saleem, M. Ghalambaz and A. Issakhov, Mathematical study of electroosmotically driven peristaltic flow of Casson fluid inside a tube having systematically contracting and relaxing sinusoidal heated walls. Chin. J. Phys. 71 (2021) 300–311. [CrossRef] [Google Scholar]
  28. F. Sebba, Foams and Biliquid Foams-Aphron. John Wiley and Sons, New York (1987) 46–61, 62–7R, 102–127. [Google Scholar]
  29. T.M. Squires and M.Z. Bazant, Induced-charge electro-osmosis. J. Fluid Mech. 509 (2003) 509. [Google Scholar]
  30. B.A. Suleimanov, F.S. Ismailov and E.F. Veliyev, Nanofluid for enhanced oil recovery. J. Pet. Sci. Eng. 78 (2011) 431–437. [CrossRef] [Google Scholar]
  31. D. Tripathi, V.K. Narla and Y. Aboelkassem, Electrokinetic membrane pumping flow model in a microchannel. Phys. Fluids 32 (2020) 082004. [CrossRef] [Google Scholar]
  32. H. Vaidya, C. Rajashekhar, G. Manjunatha, A. Wakif, K.V. Prasad, L. Animasaun and K. Shivaraya, Analysis of entropy generation and biomechanical investigation of MHD Jeffery fluid through a vertical non-uniform channel. Case Stud. Therm. Eng. 28 (2021) 101538. [CrossRef] [Google Scholar]
  33. H. Vaidya, M. Gudekote, R. Choudhari and K.V. Prasad, Role of slip and heat transfer on peristaltic transport of Herschel-Bulkley fluid through an elastic tube. Multidiscip. Model. Mater. Struct. 14 (2018) 940–959. [CrossRef] [Google Scholar]
  34. X. Xuan, B. Xu, D. Sinton and D. Li, Electroosmotic flow with Joule heating effects. Lab Chip 3 (2004) 230–236. [CrossRef] [PubMed] [Google Scholar]
  35. H. Zhu, C. Zhang, Y. Tang, J. Wang, B. Ren and Y. Yin, Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon 45 (2007) 203–228. [CrossRef] [Google Scholar]
  36. A.M. Zidan, L.B. McCash, S. Akhtar, A. Saleem, A. Issakhov and S. Nadeem, Entropy generation for the blood flow in an artery with multiple stenoses having a catheter. Alex. Eng. J. 60 (2021) 5741–5748. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.