Math. Model. Nat. Phenom.
Volume 17, 2022
Modelling of Communicable Diseases
Article Number 25
Number of page(s) 23
Published online 01 August 2022
  1. Asian Scientist, Math in a time of cholera (2017). [Google Scholar]
  2. M.O. Beryl, L.O. George and N.O. Fredrick, Mathematical analysis of a cholera transmission model incorporating media coverage. Int. J. Pure Appl. Math. 111 (2016) 219–231. [CrossRef] [Google Scholar]
  3. F.G. Boese, Stability with respect to the delay: on a paper of K. L. Cooke and P. van den Driessche. Comment on: "On zeroes of some transcendental equations" [Funkcial. Ekvac. 29 (1986), no. 1, 77-90. J. Math. Anal. Appl. 228 (1998) 293–321. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Calatayud, J. Carlos Cortes and M. Jornet, Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model. Chaos Solit. Fractals 133 (2020) 109639. [CrossRef] [Google Scholar]
  5. V. Capasso and S.L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Rev. Epidemiol. Santé Publique 27 (1979) 121–132. [Google Scholar]
  6. F. Capone, V. De Cataldis and R. De Luca, Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic. J. Math. Biol. 71 (2015) 1107–1131. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. Centers for Disease Control and Prevention, Cholera — vibrio cholerae infection (2018). Available from [Google Scholar]
  8. C.T. Codeco, Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1 (2001) 14 pp. [CrossRef] [Google Scholar]
  9. K.L. Cooke and P. van den Driessche, On zeroes of some transcendental equations. Funkcial. Ekvac. 29 (1986) 77–90. [MathSciNet] [Google Scholar]
  10. J. Cui, Z. Wu and X. Zhou, Mathematical analysis of a cholera model with vaccination. J. Appl. Math. 2014 (2014) Art. ID 324767, 16. [Google Scholar]
  11. S. Edward and N. Nyerere, A mathematical model for the dynamics of cholera with control measures. Appl. Comput. Math. 4 (2015) 53–63. [CrossRef] [Google Scholar]
  12. R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming. Scientific Press series, Thomson, Brooks, Cole (2003). [Google Scholar]
  13. D.M. Gay, The AMPL modeling language: an aid to formulating and solving optimization problems, in: Numerical analysis and optimization, Vol. 134 of Springer Proc. Math. Stat., Springer, Cham (2015), pp. 95–116. [Google Scholar]
  14. L. Gollmann, D. Kern and H. Maurer, Optimal control problems with delays in state and control variables subject to mixed control-state constraints. Opt. Control Appl. Methods 30 (2009) 341–365. [CrossRef] [Google Scholar]
  15. L. Göllmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays. J. Ind. Manag. Optim. 10 (2014) 413–441. [CrossRef] [MathSciNet] [Google Scholar]
  16. T. Guinn, Reduction of delayed optimal control problems to nondelayed problems. J. Optim. Theory Appl. 18 (1976) 371–377. [CrossRef] [MathSciNet] [Google Scholar]
  17. D.M. Hartley, J.G. Morris, Jr. and D.L. Smith, Hyperinfectivity: a critical element in the ability of V. cholera to cause epidemics? PLOS Med. 3 (2006) 63–69. [Google Scholar]
  18. D. He, X. Wang, D. Gao and J. Wang, Modeling the 2016-2017 Yemen cholera outbreak with the impact of limited medical resources. J. Theoret. Biol. 451 (2018) 80–85. [CrossRef] [Google Scholar]
  19. S.D. Hove-Musekwa, F. Nyabadza, C. Chiyaka, P. Das, A. Tripathi and Z. Mukandavire, Modelling and analysis of the effects of malnutrition in the spread of cholera. Math. Comput. Model. 53 (2011) 1583–1595. [CrossRef] [Google Scholar]
  20. Index Mundi, Demographics: Birth rate Haiti (2015). [Google Scholar]
  21. Index Mundi, Demographics: Death rate Haiti (2015). [Google Scholar]
  22. R.I. Joh, H. Wang, H. Weiss and J.S. Weitz, Dynamics of indirectly transmitted infectious diseases with immunological threshold. Bull. Math. Biol. 71 (2009) 845–862. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  23. A.K.T. Kirschner, J. Schlesinger, A.H. Farnleitner, R. Hornek, B. Söß, B. Golda, A. Herzig and B. Reitner, Rapid growth of planktonic vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: Dependence on temperature and dissolved organic carbon quality. Appl. Environ. Microbiol. 74 (2008) 2004–2015. [CrossRef] [PubMed] [Google Scholar]
  24. Y. Kuang, Delay differential equations with applications in population dynamics. Vol. 191 of Mathematics in Science and Engineering. Academic Press, Inc., Boston, MA (1993). [Google Scholar]
  25. U. Ledzewicz and H. Schattler, Controlling a model for bone marrow dynamics in cancer chemotherapy. Math. Biosci. Eng. 1 (2004) 95–110. [CrossRef] [MathSciNet] [Google Scholar]
  26. U. Ledzewicz and H. Schöattler, On optimal singular controls for a general SIR-model with vaccination and treatment. Discrete Contin. Dyn. Syst. (2011) 981–990. [Google Scholar]
  27. A.P. Lemos-Paiao, C.J. Silva and D.F.M. Torres, An epidemic model for cholera with optimal control treatment. J. Comput. Appl. Math. 318 (2017) 168–180. [CrossRef] [MathSciNet] [Google Scholar]
  28. A.P. Lemos-Paiao, C.J. Silva and D.F.M. Torres, A cholera mathematical model with vaccination and the biggest outbreak of world's history. AIMS Math. 3 (2018) 448–463. [CrossRef] [Google Scholar]
  29. Q. Liu, D. Jiang, T. Hayat and A. Alsaedi, Dynamical behavior of a stochastic epidemic model for cholera. J. Franklin Inst. 356 (2019) 7486–7514. [CrossRef] [MathSciNet] [Google Scholar]
  30. H. Maurer and S. Pickenhain, Second-order sufficient conditions for control problems with mixed control-state constraints. J. Optim. Theory Appl. 86 (1995) 649–667. [Google Scholar]
  31. R.L. Miller Neilan, E. Schaefer, H. Gaff, K.R. Fister and S. Lenhart, Modeling optimal intervention strategies for cholera. Bull. Math. Biol. 72 (2010) 2004–2018. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. Z. Mukandavire, F.K. Mutasa, S.D. Hove-Musekwa, S. Dube and J.M. Tchuenche, Mathematical analysis of a cholera model with carriers and assessing the effects of treatment. Nova Science Publishers, Inc. (2008), pp. 1–37. [Google Scholar]
  33. Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D.L. Smith and J.G. Morris, Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe. Proc. Natl. Acad. Sci. 108 (2011) 8767–8772. [CrossRef] [PubMed] [Google Scholar]
  34. A. Mwasa and J.M. Tchuenche, Mathematical analysis of a cholera model with public health interventions. Biosystems 105 (2011) 190–200. [CrossRef] [PubMed] [Google Scholar]
  35. H. Nishiura, S. Tsuzuki and Y. Asai, Forecasting the size and peak of cholera epidemic in Yemen, 2017. Future Microbiol. 13 (2018) 399–402. [CrossRef] [PubMed] [Google Scholar]
  36. H. Nishiura, S. Tsuzuki, B. Yuan, T. Yamaguchi and Y. Asai, Transmission dynamics of cholera in Yemen, 2017: a real time forecasting. Theor. Biol. Med. Model. 14 (2017) 8 pp. [CrossRef] [Google Scholar]
  37. M. Pascual, L.F. Chaves, B. Cash, X. Rodo and M. Yunus, Predicting endemic cholera: the role of climate variability and disease dynamics. Clim. Res. 36 (2008) 131–140. [CrossRef] [Google Scholar]
  38. J. Reidl and K.E. Klose, Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol. Rev. 26 (2002) 125–139. [CrossRef] [Google Scholar]
  39. R.P. Sanches, C.P. Ferreira and R.A. Kraenkel, The role of immunity and seasonality in cholera epidemics. Bull. Math. Biol. 73 (2011) 2916–2931. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  40. H. Schattler, U. Ledzewicz and H. Maurer, Sufficient conditions for strong local optimality in optimal control problems with L2-type objectives and control constraints. Discrete Contin. Dyn. Syst. Ser. B 19 (2014) 2657–2679. [MathSciNet] [Google Scholar]
  41. Z. Shuai, J.H. Tien and P. van den Driessche, Cholera models with hyperinfectivity and temporary immunity. Bull. Math. Biol. 74 (2012) 2423–2445. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  42. G.-Q. Sun, J.-H. Xie, S.-H. Huang, Z. Jin, M.-T. Li and L. Liu, Transmission dynamics of cholera: mathematical modeling and control strategies. Commun. Nonlinear Sci. Numer. Simul 45 (2017) 235–244. [CrossRef] [MathSciNet] [Google Scholar]
  43. A. Wachter and L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106 (2006) 25–57. [CrossRef] [MathSciNet] [Google Scholar]
  44. J. Wang and C. Modnak, Modeling cholera dynamics with controls. Can. Appl. Math. Q. 19 (2011) 255–273. [MathSciNet] [Google Scholar]
  45. J. Wang and S. Liao, A generalized cholera model and epidemic-endemic analysis. J. Biol. Dyn. 6 (2012) 568–589. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  46. World Health Organization, Yemen: Weekly epidemiological bulletin W26 2018 (2018). Available at [Google Scholar]
  47. World Health Organization, Global Task Force on Cholera Control, Cholera country profile: Haiti (2011). http::// [Google Scholar]
  48. X. Yang, L. Chen and J. Chen, Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models. Comput. Math. Appl. 32 (1996) 109–116. [CrossRef] [MathSciNet] [Google Scholar]
  49. B. Zhou, D. Jiang, Y. Dai and T. Hayat, Stationary distribution and density function expression for a stochastic SIQRS epidemic model with temporary immunity. Nonlinear Dyn. 105 (2021) 931–955. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.