Math. Model. Nat. Phenom.
Volume 17, 2022
Recent Trends in Hyperbolic Equations in Physical Systems
Article Number 24
Number of page(s) 19
Published online 01 August 2022
  1. S. Akbas, Modal analysis of viscoelastic nanorods under an axially harmonic load. Adv Nano Res 8 (2020) 277–282. [Google Scholar]
  2. S.D. Akbas, Forced vibration analysis of cracked nanobeams. J. Brazilian Soc. Mech. Sci. Eng. 40 (2018) 1–11. [CrossRef] [Google Scholar]
  3. S.D. Akbas, Axially forced vibration analysis of cracked a nanorod. J. Comput. Appl. Mech. 50 (2019) 63–68. [Google Scholar]
  4. P. Alasvand Hadi, H. Heidari and R. Nazemnezhad, Approximate controllability of nonlocal Rayleigh beam. Comp. M. Diff. Eq. 9 (2021) 180–186. [Google Scholar]
  5. S.B. Ali, A.B. Oshido, A. Houlton and B.R. Horrocks, Models for sensing by nanowire networks: application to organic vapour detection by multiwall carbon nanotube—DNA films. Nanotechnology 33 (2021) 045502. [Google Scholar]
  6. R.F. Curtain and H.J. Zwart, Vol. 71 of An Introduction to Infinite-Dimensional Linear System Theory: A state-space approach. Springer-Nature (2020). [Google Scholar]
  7. M. Eren and M. Aydogdu, Finite strain nonlinear longitudinal vibration of nanorods. Adv. Nano Res. 6 (2018) 323–337. [Google Scholar]
  8. G. Golo, A. van der Schaft and S. Stramigioli, Hamiltonian formulation of planar beams. IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2003) 169–174. [Google Scholar]
  9. H. Heidari, Dynamical analysis of an axially vibrating nanorod. Int. J. Appl. Math. 29 (2016) 263–270. [CrossRef] [MathSciNet] [Google Scholar]
  10. H. Heidari and H. Zwart, Port-Hamiltonian modelling of nonlocal longitudinal vibrations in a viscoelastic nanorod. Math. Comput. Model. Dyn. Syst. 25 (2019) 447–462. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Inguva, R.K. Vijayaraghavan, E. McGlynn and J.P. Mosnier, High quality interconnected core/shell ZnO nanorod architectures grown by pulsed laser deposition on ZnO-seeded Si substrates. Superlattices Microstruct. 101 (2017) 8–14. [CrossRef] [Google Scholar]
  12. B. Jacob and H.J. Zwart, Linear port-Hamiltonian systems on infinite-dimensional spaces. Springer, Basel (2012). [CrossRef] [Google Scholar]
  13. D. Karlicic, M. Cajic, T. Murmu and S. Adhikari, Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems. Eur. J. Mech. A/Solids 49 (2015) 183–196. [CrossRef] [MathSciNet] [Google Scholar]
  14. A.L. Kozlovskiy, I.V. Korolkov, G. Kalkabay, M.A. Ibragimova, A.D. Ibrayeva, M.V. Zdorovets, V.S. Mikulich, D.V. Yakimchuk, A.E. Shumskaya and E.Y. Kaniukov, Comprehensive study of Ni nanotubes for bioapplications: from synthesis to payloads attaching. J. Nanomater. 2017 (2017) 3060972. [CrossRef] [Google Scholar]
  15. Y. Le Gorrec, H. Zwart and B. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators. SIAM J. Control Optim. 44 (2006) 1864–1892. [Google Scholar]
  16. D.L. Liu, W. Lei, S. Qin and Y. Chen, Template-free synthesis of functional 3D BN architecture for removal of dyes from water. Sci. Rep. 4 (2014) 1–5. [Google Scholar]
  17. A. Macchelli, A.J. van der Schaft and C. Melchiorri, Port Hamiltonian formulation of infinite dimensional systems II. Boundary control by interconnection. Proc. IEEE Conf. Decis. Control 4 (2004) 3768–3773. [Google Scholar]
  18. T. Murmu and S. Adhikari, Nonlocal effects in the longitudinal vibration of double-nanorod systems. Phys. E Low-Dimensional Syst. Nanostructures 43 (2010) 415–422. [CrossRef] [Google Scholar]
  19. H.M. Numanoglu, B. Akgöz and O. Civalek, On dynamic analysis of nanorods. Int. J. Eng. Sci. 130 (2018) 33–50. [CrossRef] [Google Scholar]
  20. V.N. Popov, Carbon nanotubes: properties and application. Mater. Sci. Eng. R Reports 43 (2004) 61–102. [CrossRef] [Google Scholar]
  21. N.M. Pugno, The role of defects in the design of space elevator cable: from nanotube to megatube. Acta Mater. 55 (2007) 5269–5279. [CrossRef] [Google Scholar]
  22. S. Rafique, L. Han and H. Zhao, Growth and electrical properties of free-standing zinc oxide nanomembranes. Cryst. Growth Des. 16 (2016) 1654–1661. [CrossRef] [Google Scholar]
  23. A. Raunika, S.A. Raj, K. Jayakrishna and M.T. Sultan, Carbon nanotube: A review on its mechanical properties and application in aerospace industry. IOP Conf. Ser. Mater. Sci. Eng. 270 (2017) 012027. [CrossRef] [Google Scholar]
  24. A. Salazar, V. Perez-De la Cruz, E. Munoz-Sandoval, V. Chavarria, M.D.L. Garcia Morales, A. Espinosa-Bonilla, J. Sotelo, A. Jimenez-Anguiano and B. Pineda, Potential use of nitrogen-doped carbon nanotube sponges as payload carriers against malignant glioma. Nanomaterials 11 (2021) 1–11. [Google Scholar]
  25. J.P. Salvetat-Delmotte and A. Rubio, Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon N. Y. 40 (2002) 1729–1734. [CrossRef] [Google Scholar]
  26. M. Simsek, Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105 (2016) 12–27. [CrossRef] [Google Scholar]
  27. V. Trenchant, Y. Fares, H. Ramirez and Y. Le Gorrec, A port-Hamiltonian formulation of a 2D boundary controlled acoustic system. IFAC 48 (2015) 235–240. [Google Scholar]
  28. A. van der Schaft and D. Jeltsema, Port-Hamiltonian systems theory: an introductory overview. Found. Trends Syst. Control 1 (2014) 173–378. [CrossRef] [Google Scholar]
  29. T. Voß and J. Scherpen, Port-Hamiltonian modeling of a nonlinear Timoshenko beam with piezo actuation. SIAM J. Control Optim. 52 (2014) 493–519. [CrossRef] [MathSciNet] [Google Scholar]
  30. K. Wang and B. Wang, Timoshenko beam model for the vibration analysis of a cracked nanobeam with surface energy. J. Vib. Control 21 (2015) 2452–2464. [CrossRef] [MathSciNet] [Google Scholar]
  31. J. Yoon, C. Ru and A. Mioduchowski, Terahertz vibration of short carbon nanotubes modeled as Timoshenko beams. J. Appl. Mech. 72 (2005) 10–17. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.