Open Access
Issue
Math. Model. Nat. Phenom.
Volume 17, 2022
Article Number 34
Number of page(s) 17
DOI https://doi.org/10.1051/mmnp/2022037
Published online 30 August 2022
  1. L. Arnold, Random dynamical systems. Springer, Berlin (2013). [Google Scholar]
  2. P. Ashwin, S. Wieczorek, R. Vitolo and P. Cox, Tipping points in open systems: Bifurcation, noise-induced and rate-independent examples in the climate system. Philos. Trans. R. Soc. A 370 (2012) 1166–1184. [CrossRef] [PubMed] [Google Scholar]
  3. H.L. Barker, L.M. Holeski and R.L. Lindroth, Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species. PloS one 13 (2018) 0200954. [Google Scholar]
  4. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares and C.S. Zhou, The synchronization of chaotic systems. Phys. Rep. 366 (2002) 1–101. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Boettiger and A. Hastings, From patterns to predictions. Nature 493 (2013) 157–158. [Google Scholar]
  6. C. Ciemer, R. Winkelmann, J. Kurths and N. Boers, Impact of an AMOC weakening on the stability of the southern Amazon rainforest. Eur. Phys. J. Spec. Top. 230 (2021) 1–9. [Google Scholar]
  7. A. Das and G.P. Samanta, A prey-Cpredator model with refuge for prey and additional food for predator in a fluctuating environment. Physica A 538 (2020) 122844. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Duan, An introduction to stochastic dynamics. Cambridge University Press (2015). [Google Scholar]
  9. T. Gao, J. Duan and X. Li, Fokker-Planck equations for stochastic dynamical systems with symmetric Levy motions. Appl. Math. Comput. 278 (2016) 1–20. [MathSciNet] [Google Scholar]
  10. M. Gladwell, The tipping point: How little things can make a big difference. Little Brown (2006). [Google Scholar]
  11. D. Goulson, The insect apocalypse, and why it matters. Curr. Biol. 29 (2019) 967–971. [Google Scholar]
  12. T. Grafke and E. Vanden-Eijnden, Non-equilibrium transitions in multiscale systems with a bifurcating slow manifold. J. Stat. Mech. 9 (2017) 093208. [CrossRef] [Google Scholar]
  13. R.C. Hilborn, Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press on Demand (2000). [Google Scholar]
  14. H. Kielhofer, Bifurcation theory: an introduction with applications to partial differential equations. Springer Science & Business Media (2011). [Google Scholar]
  15. T.M. Lenton, H. Held, E. Kriegler, et al., Tipping elements in the Earth’s climate system. Proc. Nati. Acad. Sci. 105 (2008) 1786–1793. [CrossRef] [PubMed] [Google Scholar]
  16. Y. Li, J. Duan, X. Liu and Y. Zhang, Most probable dynamics of stochastic dynamical systems with exponentially light jump fluctuations. Chaos 21 (2020) 063142. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. D. Ludwig, D.D. Jones and C.S. Holling, Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol. 47 (1978) 315–332. [CrossRef] [Google Scholar]
  18. A.C.J. Luo and H. Merdan (Eds.), Mathematical Modeling and Applications in Nonlinear Dynamics. Springer International Publishing (2016). [Google Scholar]
  19. S. Lynch, Dynamical systems with applications using MATLAB. Birkhäuser, Boston (2004). [Google Scholar]
  20. A. Markos, T. Dimitris, S. Michalis and P. Charalambos, Stochastic processes and insect outbreak systems: Application to olive fruit fly. WSEAS Press (2007) 98–103. [Google Scholar]
  21. G.A. Meyer, J.A. Senulis and J.A. Reinartz, Effects of temperature and availability of insect prey on bat emergence from hibernation in spring. J. Mammal. 97 (2016) 1623–1633. [CrossRef] [Google Scholar]
  22. C. Robinet and A. Roques, Direct impacts of recent climate warming on insect populations. Integr. Zool. 5 (2010) 132–142. [CrossRef] [Google Scholar]
  23. G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian random processes - Stochastic models with infinite variance - Stochastic modeling. Chapman & Hall, New York (1994). [Google Scholar]
  24. K.I. Sato, Levy processes and infinitely divisible distributions. Cambridge University Press (1999). [Google Scholar]
  25. M.E. Saunders, Ups and downs of insect populations. Nat. Ecol. Evol. 3 (2019) 1616–1617. [CrossRef] [Google Scholar]
  26. M. Scheffer, Critical transitions in nature and society. Princeton University Press (2020). [Google Scholar]
  27. S.H. Strogatz, Nonlinear dynamics and chaos with applications to physics, biology, chemistry, and engineering. CRC Press (2018). [Google Scholar]
  28. J.M.T. Thompson and J. Sieber, Predicting climate tipping as a noisy bifurcation: a review. Int. J. Bifurcation Chaos 21 (2011) 399–423. [CrossRef] [Google Scholar]
  29. S.F. Ward, R.D. Moon, D.A. Herms and B.H. Aukema, Determinants and consequences of plant-insect phenological synchrony for a non-native herbivore on a deciduous conifer: implications for invasion success. Oecologia 190 (2019) 867–878. [CrossRef] [PubMed] [Google Scholar]
  30. S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, 2nd edn., Springer, New York (2003). [Google Scholar]
  31. F. Wong and J.J. Collins, Evidence that coronavirus superspreading is fat-tailed. Proc. Nati. Acad. Sci. 117 (2020) 29416–29418. [CrossRef] [PubMed] [Google Scholar]
  32. S. Yuan, Z. Zeng and J. Duan, Stochastic bifurcation for two-time-scale dynamical system with a-stable Levy noise. J. Stat. Mech. 3 (2021) 033204. [CrossRef] [MathSciNet] [Google Scholar]
  33. S. Yuan, Code, Github, https://github.com/ShenglanYuan/Stochastic-bifurcation-and-tipping-phenomena-of-insect-outbreak-dynamical-systems-driven-by-stable (2021). [Google Scholar]
  34. Y. Zheng, L. Serdukova, J. Duan and J. Kurths, Transitions in a genetic transcriptional regulatory system under Levy motion. Sci. Rep. 6 (2016) 1–12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.