Ecology and evolution
Open Access
Issue
Math. Model. Nat. Phenom.
Volume 17, 2022
Ecology and evolution
Article Number 33
Number of page(s) 31
DOI https://doi.org/10.1051/mmnp/2022032
Published online 25 August 2022
  1. M. Banerjee, N. Mukherjee and S. Ghorai, Detection of turing patterns in a three species food chain model via amplitude equation. Commun. Nonlinear Sci. Numer. Simul. 69 (2019) 219–236. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Banerjee and S. Petrovskii, Self-organised spatial patterns and chaos in a ratio-dependent predator–prey system. Theor. Ecol. 4 (2011) 37–53. [CrossRef] [Google Scholar]
  3. M. Banerjee and V. Volpert, Spatio-temporal pattern formation in Rosenzweig—Macarthur model: effect of nonlocal interactions. Ecol. Complex. 30 (2017) 2–10. [CrossRef] [Google Scholar]
  4. M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator—prey systems: spatio-temporal patterns in the neighborhood of Turing—Hopf bifurcations. J. Theor. Biol. 245 (2007) 220–229. [CrossRef] [Google Scholar]
  5. M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol. 245 (2007) 220–229. [CrossRef] [Google Scholar]
  6. I. Boudjema and S. Djilali, Turing-Hopf bifurcation in Gauss-type model with cross diffusion and its application. Nonlinear Stud. 25 (2018) 665–687. [MathSciNet] [Google Scholar]
  7. B. Bozzini, G. Gambino, D. Lacitignola, S. Lupo, M. Sammartino and I. Sgura, Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth. Comput. Math. Appl. 70 (2015) 1948–1969. [CrossRef] [MathSciNet] [Google Scholar]
  8. B.I. Camara, Waves analysis and spatiotemporal pattern formation of an ecosystem model. Nonlinear Anal.: Real World Appl. 12 (2011) 2511–2528. [CrossRef] [MathSciNet] [Google Scholar]
  9. M.C. Cross and P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Modern Phys. 65 (1993) 851. [CrossRef] [Google Scholar]
  10. S. Djilali and S. Bentout, Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior. Acta Appl. Math. 169 (2020) 125–143. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Ducrots and M. Langlais, A singular reaction—diffusion system modelling prey–predator interactions: Invasion and coextinction waves. J. Differ. Equ. 253 (2012) 502–532. [CrossRef] [Google Scholar]
  12. W.F. Paquin-Lefebvre, Nagata and M.J. Ward, Pattern formation and oscillatory dynamics in a two-dimensional coupled bulk-surface reaction-diffusion system. SIAM J. Appl. Dyn. Syst. 18 (2019) 1334–1390. [CrossRef] [MathSciNet] [Google Scholar]
  13. G.F. Gause, The Struggle for Existence. Williams and Wilkins, Baltimore, Maryland (1934). [Google Scholar]
  14. M. Giaquinta and G. Modica, Local existence for quasilinear parabolic systems under nonlinear boundary conditions. Ann. Matemat. Pura Appl. 149 (1987) 41–59. [CrossRef] [Google Scholar]
  15. A. Gierer and H. Meinhardt, A theory of biological pattern formation. Kybernetik 12 (1972) 30–39. [CrossRef] [PubMed] [Google Scholar]
  16. R. Han and B. Dai, Cross-diffusion-driven Turing instability and weakly nonlinear analysis of Turing patterns in a unidirectional consumer-resource system. Boundary Value Probl. 2017 (2017) 1–33. [Google Scholar]
  17. R. Han and B. Dai, Cross-diffusion induced Turing instability and amplitude equation for a toxic-phytoplankton—zooplankton model with nonmonotonic functional response. Int. J. Bifurc. Chaos 27 (2017) 1750088. [CrossRef] [Google Scholar]
  18. C. Huffaker, Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27 (1958) 343–383. [CrossRef] [Google Scholar]
  19. H.B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems. In “Applications of Bifurcation Theory” (ed. Rabinowitz), Academic Press, 359–384 (1977) [Google Scholar]
  20. C.A. Klausmeier, Regular and irregular patterns in semiarid vegetation. Science 284 (1999) 1826–1828. [CrossRef] [PubMed] [Google Scholar]
  21. S. Kondo and R. Asai, A reaction—diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376 (1995) 765–768. [CrossRef] [PubMed] [Google Scholar]
  22. V. Lakshmikantham, S. Leela and A.A. Martynyuk, Practical stability of nonlinear systems. World Scientific (1990). [Google Scholar]
  23. E.V. Leeuwen, V.A.A. Jansen and P.W. Bright, How population dynamics shape the functional response in a one-predator– two-prey system. Ecol. Soc. Am. 88 (2007) 1571–1581. [Google Scholar]
  24. S.A. Levin and L.A. Segel, Hypothesis for origin of planktonic patchiness. Nature 259 (1976) 659–659. [CrossRef] [PubMed] [Google Scholar]
  25. Z. Ling, L. Zhang and Z. Lin, Turing pattern formation in a predator—prey system with cross diffusion. Appl. Math. Model. 38 (2014) 5022–5032. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Lio, X. tang and C. Xu, Stability and instability analysis for a ratio-dependent predator–prey system with diffusion effect. Nonlinear Anal.: Real World Appl. 12 (2011) 1616–1626. [CrossRef] [MathSciNet] [Google Scholar]
  27. A.J. Lotka, Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42 (1920) 1595–1599. [CrossRef] [Google Scholar]
  28. H. Malchow, Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulation. Chapman and Hall/CRC (2007). [Google Scholar]
  29. M. Manjun, G. Meiyan and R. Carretero-González, Pattern formation for a two-dimensional reaction-diffusion model with chemotaxis. J. Math. Anal. Appl. 475 (2019) 1883–1909. [CrossRef] [MathSciNet] [Google Scholar]
  30. A. Marasco, A. Luorio, F. Cartení, G. Bonanomi, D.M. Tartakovsky, S. Mazzoleni and F. Giannino, Vegetation pattern formation due to interactions between water availability and toxicity in plant—soil feedback. Bull. Math. Biol. 76 (2014) 2866–2883. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  31. A. Medvinsky and S. Petrovskii, Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44 (2002) 311–370. [CrossRef] [MathSciNet] [Google Scholar]
  32. H.D. Mittelmann, A pseudo-arclength continuation method for nonlinear eigenvalue problems. SIAM J. Numer. Anal. 23 (1986) 1007–1016. [CrossRef] [MathSciNet] [Google Scholar]
  33. J.D. Murray, vol. 3 of Mathematical biology II: spatial models and biomedical applications. Springer, New York (2001). [Google Scholar]
  34. D. Nishiura and Y. Ueyama, A skeleton structure of self-replicating dynamics. Physica D 130 (1999) 73–104. [CrossRef] [Google Scholar]
  35. F.L. Ochoa and J.D. Murray, A non-linear analysis for spatial structure in a reaction-diffusion model. Bull. Math. Biol. 45 (1983) 917–930. [CrossRef] [MathSciNet] [Google Scholar]
  36. S. Pal, S. Ghorai, and M. Banerjee, Analysis of a prey–predator model with non-local interaction in the prey population. Bull. Math. Biol. 80 (2018) 906–925. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  37. C.V. Pao, Nonlinear parabolic and elliptic equations. Springer Science & Business Media (2012). [Google Scholar]
  38. L. Perko, Differential Equations and Dynamical Systems. Springer-Verlag, New York (2000). [Google Scholar]
  39. S.V. Petrovskii and H. Malchow, A minimal model of pattern formation in a prey-predator system. Math. Comput. Modell. 29 (1999) 49–63. [CrossRef] [Google Scholar]
  40. L.A. Segel and J.L. Jackson, Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37 (1972) 545–559. [CrossRef] [Google Scholar]
  41. J. Sherratt and S. Matthew, Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models. J. R. Soc. Interface 5 (2008) 483–505. [CrossRef] [PubMed] [Google Scholar]
  42. J.A. Sherratt, B.T. Eagan and M.A. Lewis, Oscillations and chaos behind predator—prey invasion: mathematical artifact or ecological reality? Philos. Trans. Royal Soc. London. Ser. B 352 (1997) 21–38. [CrossRef] [Google Scholar]
  43. J. Smoller, vol. 258 of Shock waves and reaction-diffusion equations. Springer Science & Business Media (2012). [Google Scholar]
  44. P.D. Spencer and J.S. Collie, A simple predator–prey model of exploited marine fish populations incorporating alternative prey. ICES J. Marine Sci. 53 (1995) 615–628. [Google Scholar]
  45. A.M. Turing, The chemical basis of morphogenesis. Phil. Trans. Royal Soc. 237 (1952) 37–72. [Google Scholar]
  46. E. Venturino and S. Petrovskii, Spatiotemporal behavior of a prey—predator system with a group defense for prey. Ecol. Complex. 14 (2013) 37–47. [CrossRef] [Google Scholar]
  47. V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. C. Ferrari (1926). [Google Scholar]
  48. W. Walter, Differential inequalities and maximum principles: theory, new methods and applications. Nonlinear Anal.: Theory, Methods Appl. 30 (1997) 4695–4711. [CrossRef] [Google Scholar]
  49. W. Wang, Q.X. Liu and Z. Jin, Spatiotemporal complexity of a ratio-dependent predator-prey system. Phys. Rev. E 75 (2007) 051913. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  50. L. Zhang, J. Liu and M. Banerjee, Hopf and steady state bifurcation analysis in a ratio-dependent predator–prey model. Commun. Nonlinear Sci. Numer. Simulat 44 (2017) 52–73. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.