Math. Model. Nat. Phenom.
Volume 17, 2022
Modelling of Communicable Diseases
Article Number 32
Number of page(s) 17
Published online 23 August 2022
  1. A. Alvarez-Arenas, K.E. Starkov, G.F. Calvo and J. Belmonte-Beitia, Ultimate dynamics and optimal control of a multi-compartment model of tumor resistance to chemotherapy. Discr. Continu. Dyn. Syst. B 24 (2019) 2017. [Google Scholar]
  2. J.W. Bachman and T. Hillen, Mathematical optimization of the combination of radiation and differentiation therapies for cancer. Front. Oncol. 3 (2013). [CrossRef] [Google Scholar]
  3. H.E. Barker, J.T.E. Paget, A.A. Khan and K.J. Harrington, The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15 (2015) 409–425. [CrossRef] [PubMed] [Google Scholar]
  4. G.C. Barnett, C.M.L. West, A.M. Dunning, R.M. Elliott, C.E. Coles, P.D.P. Pharoah and N.G. Burnet, Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat. Rev. Cancer 9 (2009) 134–142. [CrossRef] [PubMed] [Google Scholar]
  5. G. Bedard and E. Chow, The failures and challenges of bone metastases research in radiation oncology. J. Bone Oncol. 2 (2013) 84–88. [CrossRef] [Google Scholar]
  6. F.J. Bonnans, D. Giorgi, V. Grelard, B. Heymann, S. Maindrault, P. Martinon, O. Tissot and J. Liu, Bocop – a collection of examples. INRIA (2017). [Google Scholar]
  7. B. Bonnard and M. Chyba, Vol. 40 of Singular trajectories and their role in control theory. Springer-Verlag (2003). [Google Scholar]
  8. D.J. Brenner, The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin. Radiat. Oncol. 18 (2008) 234–239. [CrossRef] [Google Scholar]
  9. C. Bruni, F. Conte, F. Papa and C. Sinisgalli, Optimal weekly scheduling in fractionated radiotherapy: effect of an upper bound on the dose fraction size. J. Math. Biol. 71 (2015) 361–398. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. A. Camacho and S. Jerez, Bone metastasis treatment modeling via optimal control. J. Math. Biol. 78 (2019) 497–552. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  11. A. Camacho and S. Jerez, Nonlinear modeling and control strategies for bone diseases based on TGFβ and Wnt factors. Commun. Nonlinear Sci. Numer. Simul. 100 (2021) 105842. [CrossRef] [Google Scholar]
  12. A. Chandra, T. Lin, M.B. Tribble, J. Zhu, A.R. Altman, W.-J. Tseng and L. Qin, PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival. Bone 67 (2014) 33–40. [CrossRef] [PubMed] [Google Scholar]
  13. A. Chandra, T. Lin, T. Young, W. Tong, X. Ma, W.-J. Tseng, I. Kramer, M. Kneissel, M.A. Levine, Y. Zhang, K. Cengel, X.S. Liu and L. Qin, Suppression of sclerostin alleviates radiation-induced bone loss by protecting bone-forming cells and their progenitors through distinct mechanisms. J. Bone Mineral Res. 32 (2017) 360–372. [CrossRef] [Google Scholar]
  14. D. Chappard, B. Bouvard, M.F. Baslé, E. Legrand and M. Audran, Bone metastasis: histological changes and pathophysiological mechanisms in osteolytic or osteosclerotic localizations. A review. Morphologie 95 (2011) 65–75. [CrossRef] [PubMed] [Google Scholar]
  15. E. Chow, K. Harris, G. Fan, M. Tsao and W.M. Sze, Palliative radiotherapy trials for bone metastases: a systematic review. J. Clinic. Oncol. 25 (2007) 1423–1436. [CrossRef] [PubMed] [Google Scholar]
  16. L.G. de Pillis, W. Gu, K.R. Fister, T. Head, K. Maples, A. Murugan and K. Yoshida, Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls. Math. Biosci. 209 (2007) 292–315. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Di Franco, S. Falivene, V. Ravo and P. Muto, Radiotherapy for the Treatment of Bone Metastases, in Interventional Neuroradiology of the Spine, edited by M. Muto. Springer, Milano (2013) pp. 221–230. [CrossRef] [Google Scholar]
  18. H. Enderling, A.R.A. Anderson, M.A.J. Chaplain, A.J. Munro and J.S. Vaidya, Mathematical modelling of radiotherapy strategies for early breast cancer. J. Theor. Biol. 241 (2006) 158–171. [CrossRef] [Google Scholar]
  19. A. Ergun, K. Camphausen and L.M. Weinx, Optimal scheduling of radiotherapy and angiogenic inhibitors. Bull. Math. Biol. 65 (2003) 407–424. [CrossRef] [Google Scholar]
  20. W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control. Springer-Verlag, New York (1975). [Google Scholar]
  21. J.F. Fowler, 21 years of biologically effective dose. Br. J. Radiol. 83 (2010) 554–568. [CrossRef] [PubMed] [Google Scholar]
  22. A. Ghaffari, B. Bahmaie and M. Nazari, A mixed radiotherapy and chemotherapy model for treatment of cancer with metastasis. Math. Methods Appl. Sci. 39 (2016) 4603–4617. [CrossRef] [MathSciNet] [Google Scholar]
  23. C.E. Gross, R.M. Frank, A.R. Hsu, A. Diaz and S. Gitelis, External beam radiation therapy for orthopaedic pathology. J. Am. Acad. Orthopaed. Surg. 23 (2015) 243–252. [CrossRef] [PubMed] [Google Scholar]
  24. W.S. Hong, S.G. Wang and G.Q. Zhang, Lung cancer radiotherapy: simulation and analysis based on a multicomponent mathematical model. Comput. Math. Methods Med. 2021 (2021) Article 6640051. [Google Scholar]
  25. S. Jerez and A. Camacho, Bone metastasis modeling based on the interactions between the BMU and tumor cells. J. Comput. Appl. Math. 330 (2018) 866–876. [CrossRef] [MathSciNet] [Google Scholar]
  26. S. Jerez, E. Pliego, F.J. Solís and A.K. Miller, Antigen receptor therapy in bone metastasis via optimal control for different human life stages. J. Math. Biol. 83 (2021) Article 24. [CrossRef] [Google Scholar]
  27. S.V. Komarova, R.J. Smith, S.J. Dixon, S.M. Sims and L.M. Wahl, Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33 (2003) 206–215. [CrossRef] [PubMed] [Google Scholar]
  28. J.Y. Krzeszinski and Y. Wan, New therapeutic targets for cancer bone metastasis. Trends Pharmacolog. Sci. 36 (2015) 360–373. [CrossRef] [Google Scholar]
  29. U. Ledzewicz and H. Schättler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy. Math. Biosci. 206 (2007) 320–342. [CrossRef] [MathSciNet] [Google Scholar]
  30. U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Math. Biosci. Eng. 8 (2011) 307–323. [CrossRef] [MathSciNet] [Google Scholar]
  31. U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumor–immune dynamics. J. Math. Biol. 64 (2012) 557–577. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. U. Ledzewicz, H. Maurer and H. Schättler, Optimal combined radio- and anti-angiogenic cancer therapy. J. Optim. Theory Appl. 180 (2019) 321–340. [CrossRef] [MathSciNet] [Google Scholar]
  33. J.M. Lemos, D.V. Caiado, R. Coelho and S. Vinga, Optimal and receding horizon control of tumor growth in myeloma bone disease. Biomed. Signal Process. Control 24 (2016) 128–134. [CrossRef] [Google Scholar]
  34. S. Lenhart and J.T. Workman, Optimal control applied to biological models. CRC Press (2007). [Google Scholar]
  35. S. Lutz, The role of radiation therapy in controlling painful bone metastases. Curr. Pain Headache Rep. 16 (2012) 300–306. [CrossRef] [PubMed] [Google Scholar]
  36. M. McAsey, L. Mou and W. Han, Convergence of the forward-backward sweep method in optimal control. Comput. Optim. Appl. 53 (2012) 207–226. [CrossRef] [MathSciNet] [Google Scholar]
  37. G.R. Mundy, Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2 (2002) 584–593. [CrossRef] [PubMed] [Google Scholar]
  38. P.D. Ottewell, The role of osteoblasts in bone metastasis. J. Bone Oncol. 5 (2016) 124–127. [CrossRef] [Google Scholar]
  39. S. Paget, The distribution of secondary growths in cancer of the breast. The Lancet 133 (1889) 571–573. [CrossRef] [Google Scholar]
  40. J. Poleszczuk, R. Walker, E.G. Moros, K. Latifi, J.J. Caudell and H. Enderling, Predicting patient-specific radiotherapy protocols based on mathematical model choice for proliferation saturation index. Bull. Math. Biol. 80 (2018) 1195–1206. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  41. L.S. Pontryagin, Mathematical theory of optimal processes. CRC Press (1987). [Google Scholar]
  42. E. Ratajczyk, U. Ledzewicz and H. Schättler, Optimal control for a mathematical model of glioma treatment with oncolytic therapy and TNF-α inhibitor. J. Optim. Theory Appl. 176 (2018) 456–477. [CrossRef] [MathSciNet] [Google Scholar]
  43. A.M.A.C. Rocha, M.F.P. Costa and E.M.G.P. Fernandes, On a multiobjective optimal control of a tumor growth model with immune response and drug therapies. Int. Trans. Oper. Res. 25 (2018) 269–294. [CrossRef] [MathSciNet] [Google Scholar]
  44. R. Rockne, E.C. Alvord, J.K. Rockhill and K.R. Swanson, A mathematical model for brain tumor response to radiation therapy. J. Math. Biol. 58 (2009) 561–578. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  45. H. Schättler and U. Ledzewicz, Optimal control for mathematical models of cancer therapies. Springer-Verlag, New York (2015). [Google Scholar]
  46. R. Serre, S. Benzekry, L. Padovani, C. Meille, N. Andre, J. Ciccolini and D. Barbolosi, Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy. Cancer Res. 76 (2016) 4931–4940. [CrossRef] [PubMed] [Google Scholar]
  47. G.W. Swan, Role of optimal control theory in cancer chemotherapy. Math. Biosci. 101 (1990) 237–284. [CrossRef] [Google Scholar]
  48. A. Swierniak, Control problems arising in combined antiangiogenic therapy and radiotherapy, in Proc. 5 IASTED Conf. on Biomedical Engineering (2007) 113–117. [Google Scholar]
  49. Team Commands, Inria Saclay (2017). BOCOP: an open source toolbox for optimal control. [Google Scholar]
  50. M.S. Tiwana, M. Barnes, E. Yurkowski, K. Roden and R.A. Olson, Incidence and treatment patterns of complicated bone metastases in a population-based radiotherapy program. Radiother. Oncol. 118 (2016) 552–556. [CrossRef] [Google Scholar]
  51. J.M. Ubellacker and S.S. McAllister, The unresolved role of systemic factors in bone metastasis. J. Bone Oncol. 5 (2016) 96–99. [CrossRef] [Google Scholar]
  52. L.A.M.-L. Vakaet and T. Boterberg, Pain control by ionizing radiation of bone metastasis. Int. J. Dev. Biol. 48 (2004) 599–606. [CrossRef] [PubMed] [Google Scholar]
  53. A. Wächter and L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106 (2006) 25–57. [Google Scholar]
  54. P. Warman, A. Kaznatcheev, A. Araujo, C. Lynch and D. Basanta, Fractionated follow-up chemotherapy delays the onset of resistance in bone metastatic prostate cancer. Games 9 (2018) 19. [CrossRef] [PubMed] [Google Scholar]
  55. Y. Yang and L. Xing, Optimization of radiotherapy dose-time fractionation with consideration of tumor specific biology. Med. Phys. 32 (2005) 3666–3677. [CrossRef] [PubMed] [Google Scholar]
  56. J. Zhang, X. Qiu, K. Xi, W. Hu, H. Pei, J. Nie and G. Zhou, Therapeutic ionizing radiation induced bone loss: a review of in vivo and in vitro findings. Connective Tissue Res. 59 (2018) 509–522. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.