Cancer modelling
Open Access
Math. Model. Nat. Phenom.
Volume 17, 2022
Cancer modelling
Article Number 12
Number of page(s) 18
Published online 09 June 2022
  1. S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J.M.L. Ebos, L. Hlatky and P. Hahnfeldt, Classical mathematical models for description and prediction of experimental tumor growth PLOS Comput. Biol. 10 (2014) 1–19. [Google Scholar]
  2. M.U. Bogdanska, M. Bodnar, J. Belmonte-Beitia, M. Murek, P. Schucht, J. Beck and V.M. Pérez-García, A mathematical model of low grade gliomas treated with temozolomide and its therapeutical implications Math. Biosci. 288 (2017) 1–13. [CrossRef] [MathSciNet] [Google Scholar]
  3. DailyMed, U.S. National Library of Medicine, National Institutes of Health, Health & Human Services. https://dailymed.nlm. (accessed 2022-2-20). [Google Scholar]
  4. C. Faivre, D. Barbolosi, E. Pasquier and N. André, A mathematical model for the administration of temozolomide: comparative analysis of conventional and metronomic chemotherapy regimens Cancer Chemother. Pharmacol. 71 (2013) 1013–1019. [CrossRef] [PubMed] [Google Scholar]
  5. L.A. Fernández and C. Pola, Optimal control problems for the Gompertz model under the Norton-Simon hypothesis in chemotherapy Discrete Contin. Dyn. Syst. B 24 (2019) 2577–2612. [Google Scholar]
  6. P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing long-term burden: the logic for metronomic chemotherapeutic dosing and its angiogenic basis J. Theoret. Biol. 220 (2003) 545–554. [CrossRef] [Google Scholar]
  7. I. Kareva, D.J. Waxman and G.L. Klement, Metronomic chemotherapy: an attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance Cancer Lett. 358 (2015) 100–106. [CrossRef] [Google Scholar]
  8. U. Ledzewicz and H. Schättler, Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models? Cancer Lett. 401 (2017) 74–80. [Google Scholar]
  9. NCI: (accessed 2021-10-06). [Google Scholar]
  10. B. Neyns, A. Tosoni, W.J. Hwu and D.A. Reardon, Dose-dense temozolomide regimens: antitumor activity, toxicity, and immunomodulatory effects Cancer 116 (2010) 2868–2877. [CrossRef] [PubMed] [Google Scholar]
  11. L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules Cancer Treat. Rep. 61 (1977) 1307–1317. [Google Scholar]
  12. L. Rosso, C.S. Brock, J.M. Gallo, A. Saleem, P.M. Price, F.E. Turkheimer and E.O. Aboagye, A new model for prediction of drug distribution in tumor and normal tissues: pharmacokinetics of temozolomide in glioma patients Cancer Res. 69 (2009) 120–127. [CrossRef] [PubMed] [Google Scholar]
  13. J. Sáinz-Pardo, Optimization problems associated with differential equation models for chemotherapy. Final Undergraduate Project, Universidad de Cantabria (2020). [Google Scholar]
  14. O.G. Scharovsky, L.E. Mainetti and V.R. Rozados, Metronomic chemotherapy: changing the paradigm that more is better Curr. Oncol. 16 (2009) 7–15. [Google Scholar]
  15. R. Simon and L. Norton, The Norton-Simon hypothesis: designing more effective and less toxic chemotherapeutic regimens Nat. Clin. Rev. Oncol. 3 (2006) 406–407. [CrossRef] [PubMed] [Google Scholar]
  16. A.L. Stensjøen, O. Solheim, K.A. Kvistad, A.K. Håberg, Ø. Salvesen and E.M. Berntsen, Growth dynamics of untreated glioblastomas in vivo Neuro Oncol. 17 (2015) 1402–1411. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.