Math. Model. Nat. Phenom.
Volume 17, 2022
Systems with Hysteresis and Switching
Article Number 11
Number of page(s) 26
Published online 09 June 2022
  1. A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex networks Phys. Rep. 469 (2008) 93–153. [CrossRef] [MathSciNet] [Google Scholar]
  2. P. Bak, Devil’s staircase Phys. Today 39 (1986) 38–45. [CrossRef] [Google Scholar]
  3. V.N. Belykh, I.V. Belykh and M. Hasler, Connection graph stability method for synchronized coupled chaotic systems Physica D 195 (2004) 188–206. [CrossRef] [MathSciNet] [Google Scholar]
  4. V.N. Belykh and E.V. Pankratova, Chaotic synchronization in ensembles of coupled neurons modeled by the FitzHugh-Rinzel system Radiophys. Quantum Electr. 4 (2006) 910–921. [CrossRef] [Google Scholar]
  5. J. Bélair and P. Holmes, On linearly coupled relaxation oscillations Quart. Appl. Math. 42 (1984) 193–219. [CrossRef] [MathSciNet] [Google Scholar]
  6. E. Benoit, J. Callot, F. Diener and M. Diener, Chasse au canard (première partie) Collectanea Math. 32 (1981) 37–76. [MathSciNet] [Google Scholar]
  7. M. Brøns, M. Krupa and M. Wechselberger, Mixed mode oscillations due to the generalized canard phenomenon Fields Inst. Commun. 49 (2006) 39–63. [Google Scholar]
  8. S.A. Campbell and M. Waite, Multistability in coupled FitzHugh-Nagumo oscillators. Science Direct Working Paper (2001) (S1574-0358), 04. [Google Scholar]
  9. D. Chapelle, A. Gariah and J. Sainte-Marie, Galerkin approximation with proper orthogonal decomposition: new error estimates and illustrative examples ESAIM: M2AN 46 (2012) 731–757. [CrossRef] [EDP Sciences] [Google Scholar]
  10. J. Drover, J. Rubin, J. Su and B. Ermentrout, Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies SIAM J. Appl. Math. 65 (2004) 69–92. [CrossRef] [MathSciNet] [Google Scholar]
  11. B. Ermentrout, M. Pascal and B. Gutkin, The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators Neural Comput. 13 (2001) 1285–1310. [CrossRef] [PubMed] [Google Scholar]
  12. B. Ermentrout and M. Wechselberger, Canards, clusters, and synchronization in a weakly coupled interneuron model SIAM J. Appl. Dyn. Syst. 8 (2009) 253–278. [CrossRef] [MathSciNet] [Google Scholar]
  13. E.K. Ersöz, M. Desroches, M. Krupa and F. Clément, Canard-mediated (de) synchronization in coupled phantom bursters SIAM J. Appl. Dyn. Syst. 15 (2016) 580–608. [CrossRef] [MathSciNet] [Google Scholar]
  14. E.K. Ersöoz, M. Desroches and M. Krupa, Synchronization of weakly coupled canard oscillators Physica D 349 (2017) 46–61. [CrossRef] [MathSciNet] [Google Scholar]
  15. F.D.V. Fallani, M. Corazzol, J.R. Sternberg, C. Wyart and M. Chavez, Hierarchy of neural organization in the embryonic spinal cord: Granger-causality graph analysis of in vivo calcium imaging data IEEE Trans. Neural Syst. Rehab. Eng. 23 (2014) 333–341. [Google Scholar]
  16. S. Fernéndez-García and A. Vidal, Symmetric coupling of multiple timescale systems with mixed-mode oscillations and synchronization. Physica D 401 (2020) 132129. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane Biophys. J. 1 (1961) 445–466. [CrossRef] [Google Scholar]
  18. J. Guckenheimer, Singular Hopf bifurcation in systems with two slow variables SIAM J. Appl. Dyn. Syst. 7 (2008) 1355–1377. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Guckenheimer, and P. Meerkamp, Unfoldings of singular Hopf bifurcation SIAM J. Appl. Dyn. Syst. 11 (2012) 1325–1359. [CrossRef] [MathSciNet] [Google Scholar]
  20. A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 117 (1952) 500–544. [CrossRef] [PubMed] [Google Scholar]
  21. E.M. Izhikevich, Phase equations for relaxation oscillators SIAM J. Appl. Math. 60 (2000) 1789–1804. [CrossRef] [MathSciNet] [Google Scholar]
  22. K. Jahn, J. Grosskreutz, K. Haastert, E. Ziegler, F. Schlesinger, C. Grothe and J. Bufler, Temporospatial coupling of networked synaptic activation of AMPA-type glutamate receptor channels and calcium transients in cultured motoneurons Neuroscience 142 (2006) 1019–1029. [CrossRef] [PubMed] [Google Scholar]
  23. M. Krupa, N. Popoviéc, N. Kopell and H. Rotstein, Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos 18 (2008) 015106. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  24. M. Krupa, A. Vidal and F. Cléement, A network model of the periodic synchronization process in the dynamics of calcium concentration in GnRH neurons. J. Math. Neurosci. 3 (2013) (2013) 1–24. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Krupa and M. Wechselberger, Local analysis near a folded saddle-node singularity J. Differ. Equ. 248 (2010) 2841–2888. [CrossRef] [Google Scholar]
  26. T. Kostova-Vassilevska and G.M. Oxberry, Model reduction of dynamical systems by proper orthogonal decomposition: error bounds and comparison of methods using snapshots from the solution and the time derivatives J. Comput. Appl. Math. 330 (2018) 553–573. [CrossRef] [MathSciNet] [Google Scholar]
  27. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Em Numer. Math. 90 (2001) 117–148. [CrossRef] [Google Scholar]
  28. E. Lee and D. Terman, Stable antiphase oscillations in a network of electrically coupled model neurons SIAM J. Appl. Dyn. Syst. 12 (2013) 1–27. [CrossRef] [MathSciNet] [Google Scholar]
  29. E. Lee and D. Terman, Stability of antiphase oscillations in a network of inhibitory neurons SIAM J. Appl. Dyn. Syst. 14 (2015) 448–480. [CrossRef] [MathSciNet] [Google Scholar]
  30. J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon Proc. IRE 50 (1962) 2061–2070. [CrossRef] [Google Scholar]
  31. M. Rathinam and L.R. Petzold, A new look at proper orthogonal decomposition SIAM J. Numer. Anal. 41 (2003) 1893–1925. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. Reimbayev, K. Daley and I.V. Belykh, When two wrongs make a right: synchronized neuronal bursting from combined electrical and inhibitory coupling. Phil. Trans. R Soc. A 375 (2017) 20160282. [CrossRef] [PubMed] [Google Scholar]
  33. H.G. Rotstein and R. Kuske, Localized and asynchronous patterns via canards in coupled calcium oscillators Physica D 215 (2006) 46–61. [CrossRef] [MathSciNet] [Google Scholar]
  34. J.E. Rubin, J. Signerska-Rynkowska, J. Touboul and A. Vidal, Wild oscillations in a nonlinear neuron model with resets:(II) Mixed-mode oscillations Discrete Continu. Dyn. Syst. B 22 (2017) 4003–4039. [CrossRef] [Google Scholar]
  35. A. Stefanski, Determining thresholds of complete synchronization, and application. World Sci. Ser. Nonlinear Sci. A 67 (2009). [Google Scholar]
  36. D.W. Storti and R.H. Rand, Dynamics of two strongly coupled relaxation oscillators SIAM J. Appl. Math. 46 (1986) 56–67. [CrossRef] [MathSciNet] [Google Scholar]
  37. D. Storti and R.H. Rand, A simplified model of coupled relaxation oscillators Int. J. Non-linear Mech. 22 (1987) 283–289. [CrossRef] [Google Scholar]
  38. C. Stosiek, O. Garaschuk, K. Holthoff and A. Konnerth, In vivo two-photon calcium imaging of neuronal networks Proc. Natl. Acad. Sci. 100 (2003) 7319–7324. [CrossRef] [PubMed] [Google Scholar]
  39. P. Szmolyan and M. Wechselberger, Canards in R3 J. Differ. Equ. 177 (2001) 419–453. [CrossRef] [Google Scholar]
  40. D. Terman, E. Lee, J. Rinzel and T. Bem, Stability of anti-phase and in-phase locking by electrical coupling but not fast inhibition alone SIAM J. Appl. Dyn. Syst. 10 (2011) 1127–1153. [CrossRef] [MathSciNet] [Google Scholar]
  41. S. Volkwein, Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. Lecture Notes. University of Konstanz, Konstanz (2013). [Google Scholar]
  42. D.D. Wang and A. Bordey, The astrocyte odyssey Progr. Neurobiol. 86 (2008) 342–367. [Google Scholar]
  43. M. Wechselberger, Existence and bifurcation of canards in R3 in the case of a folded node SIAM J. Appl. Dyn. Syst. 4 (2005) 101–139. [CrossRef] [MathSciNet] [Google Scholar]
  44. C. Wyart, C. Ybert, L. Bourdieu, C. Herr, C. Prinz and D. Chatenay, Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces J. Neurosci. Methods 117 (2002) 123–131. [CrossRef] [Google Scholar]
  45. A.M. Zhabotinsky, H.G. Rotstein, I.R. Epstein and N. Kopell, A canard mechanism for localization in systems of globally coupled oscillators. SIAM J. Appl. Math. 63 (2003) 1998–2019. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.