Open Access
Math. Model. Nat. Phenom.
Volume 17, 2022
Article Number 40
Number of page(s) 23
Published online 14 October 2022
  1. I. Aldasoro, L. Gambacorta, P. Giudici and T. Leach, The drivers of cyber risk (2020). Available at (accessed 06 December 2021). [Google Scholar]
  2. Z. Amin, A practical road map for assessing cyber risk. J. Risk Res. 22 (2019) 32–43. [CrossRef] [Google Scholar]
  3. Y. Antonio and S. Indratno, Cyber insurance rate making based on markov model for regular networks topology. J. Phys. 1752 (2021) 012002. [Google Scholar]
  4. Australian Cyber Security Centre, Restricting Administrative Privileges (2021). Available at (accessed 16 December 2021). [Google Scholar]
  5. R. Betterley, Cyber privacy insurance market survey: a tough market for larger insureds, but smaller insureds finding eager insurers (2016). Available at (accessed 12 December 2021). [Google Scholar]
  6. Cybersecurity and Infrastructure Security Agency, Securing network infrastructure devices (2018). Available at (accessed 12 December 2021). [Google Scholar]
  7. Cynet, 2022 Survey of CISOs with small cyber security teams (2022). Available at (accessed 08 August 2022). [Google Scholar]
  8. Department of Homeland Security, The increasing threat to network infrastructure devices and recommended mitigations (2016). Available at (accessed: 16 November 2021). [Google Scholar]
  9. Department of Justice: Southern District of New York, California man pleads guilty to hacking websites for the Combating Terrorism Center at West Point and the New York City Comptroller (2018). Available at (accessed: 21 November 2021). [Google Scholar]
  10. M. Eling and K. Jung, Copula approaches for modeling cross-sectional dependence of data breach losses. Insur. Math. Econ. 82 (2018) 167–180. [CrossRef] [Google Scholar]
  11. M. Eling, K. Jung and J. Shim, Unraveling heterogeneity in cyber risks using quantile regressions. Insur. Math. Econ. 104 (2022) 222–242. [CrossRef] [Google Scholar]
  12. M. Eling and J. Wirfs, Modelling and management of cyber risk. Int. Actuar. Assoc. Life Section (2015). [Google Scholar]
  13. M. Eling and J. Wirfs, What are the actual costs of cyber risk events? Eur. J. Oper. Res. 272 (2019) 1109–1119. [CrossRef] [Google Scholar]
  14. S. Farkas, O. Lopez and M. Thomas, Cyber claim analysis using generalized Pareto regression trees with applications to insurance. Insur. Math. Econ. 98 (2021) 92–105. [CrossRef] [Google Scholar]
  15. Federal Bureau of Investigation, Indicators of compromised associated with Diavol (2022). Available at (accessed: 03 December 2021). [Google Scholar]
  16. H. Ferraiolo, D.A. Cooper, A.R. Regenscheid, K. Scarfone and M.P. Souppaya, Best practices for privileged user PIV authentication (2016). Available at (accessed 25 August 2021). [Google Scholar]
  17. P. Georgi, L. Morrow and T. Highfill, Updated and expanded small business statistics: Wages, employment, and gross output by industry and enterprise size, 2012–2017 (2021). Available at (accessed 16 December 2021). [Google Scholar]
  18. H. Herath and T. Herath, Copula-based actuarial model for pricing cyber-insurance policies, Insur. Mark. Compan. 2 (2011) 7–20. [Google Scholar]
  19. P. Jevtić and N. Lanchier, Dynamic structural percolation model of loss distribution for cyber risk of small and medium-sized enterprises for tree-based LAN topology. Insur. Math. Econ. 91 (2020) 209–223. [CrossRef] [Google Scholar]
  20. P. Jevtić and N. Lanchier, Systems and methods for a simulation program of a percolation model for the loss distribution caused by a cyber attack. uS Patent No. 11,354,752 (2022). [Google Scholar]
  21. K. Jung, Extreme data breach losses: an alternative approach to estimating probable maximum loss for data breach risk. North Am. Actuar. J. 25 (2021) 580–603. [CrossRef] [Google Scholar]
  22. I. Kovačević, S. Groš and A. Derek, Automatically generating models of IT systems. IEEE Access 10 (2022) 13536–13554. [CrossRef] [Google Scholar]
  23. Marsh, U.K. cyber insurance trends 2020 (2021). Available at (accessed 16 December 2021). [Google Scholar]
  24. N. Mhaskar, M. Alabbad and R. Khedri, A formal approach to network segmentation. Comput. Secur. 103 (2021) 102162. [CrossRef] [Google Scholar]
  25. T.J. Moore and J.-H. Cho, Applying percolation theory, in Cyber Resilience of Systems and Networks Springer (2019), pp. 107–133. [CrossRef] [Google Scholar]
  26. National Institute of Standards and Technology, Intrusion (2021). Available at (accessed 16 December 2021). [Google Scholar]
  27. National Institute of Standards and Technology, Least privilege (2021). Available at (accessed 04 December 2021). [Google Scholar]
  28. National Security Agency, Defend Privileges and Accounts (2019). Available at (accessed: 26 August 2021). [Google Scholar]
  29. National Security Agency, Segment networks and deploy application-aware defenses (2019). Available at (accessed 09 December 2021). [Google Scholar]
  30. NetDiligence, Cyber Claims Study (2019). Available at (accessed: 10 December 2021). [Google Scholar]
  31. S. Romanosky, L. Ablon, A. Kuehn and T. Jones, Content analysis of cyber insurance policies: how do carriers price cyber risk? J. Cybersecur. 5 (2019) 1–19. [CrossRef] [Google Scholar]
  32. SonicWall, Mid-Year Update: SonicWall Cyber Threat Report (2021). Available at (accessed 18 December 2021). [Google Scholar]
  33. The Institute of Risk Management, Cyber risk and risk management (2018). Available at (accessed 11 December 2021). [Google Scholar]
  34. U.S. Government Accountability Office, Cyber Insurance: insurers and policyholders face challenges in an evolving market (2021). Available at (accessed 14 December 2021). [Google Scholar]
  35. U.S. Securities and Exchange Commission, IT specialist settles charges of insider trading on hacked nonpublic information (2016). Available at (accessed 04 December 2021). [Google Scholar]
  36. U.S. Small Business Administration, Table of small business size standards matched to North American industry classification system codes (2019). Available at (accessed: 03 December 2021). [Google Scholar]
  37. Verizon, 2018 Verizon Data Breach Investigations Report (2018). Available at (accessed 16 December 2021). [Google Scholar]
  38. Verizon, 2021 Verizon Data Breach Investigations Report (2021). Available at (accessed 15 December 2021). [Google Scholar]
  39. N. Wagner, C.Ş. Şahin, M. Winterrose, J. Riordan, J. Pena, D. Hanson and W.W. Streilein, Towards automated cyber decision support: a case study on network segmentation for security, in 2016 IEEE Symposium Series on Computational Intelligence. IEEE (2016) 1–10. [Google Scholar]
  40. H. Wang, Z. Chen, J. Zhao, X. Di and D. Liu, A vulnerability assessment method in industrial internet of things based on attack graph and maximum flow. IEEE Access 6 (2018) 8599–8609. [CrossRef] [Google Scholar]
  41. S. Wang, Z. Zhang and Y. Kadobayashi, Exploring attack graph for cost-benefit security hardening: a probabilistic approach. Comput. Secur. 32 (2013) 158–169. [CrossRef] [Google Scholar]
  42. World Economic Forum, Global cybersecurity outlook 2022 (2022). Available at (accessed 16 August 2022). [Google Scholar]
  43. X. Xie, C. Lee and M. Eling, Cyber insurance offering and performance: an analysis of the U.S. cyber insurance market. Geneva Papers on Risk and Insurance- Issues and Practice 45 (2020) 690–736. [CrossRef] [Google Scholar]
  44. M. Xu and L. Hua, Cybersecurity insurance: modeling and pricing. North Am. Actuar. J. 23 (2019) 220–249. [CrossRef] [MathSciNet] [Google Scholar]
  45. P. Żebrowski, A. Couce-Vieira and A. Mancuso, A Bayesian framework for the analysis and optimal mitigation of cyber threats to cyber-physical systems. Risk Anal (2022). [Google Scholar]
  46. G. Zeller and M. Scherer, A comprehensive model for cyber risk based on marked point processes and its application to insurance. Eur. Actuar. J. 12 (2022) 33–85. [CrossRef] [MathSciNet] [Google Scholar]
  47. X. Zhang, M. Xu, J. Su and P. Zhao, Structural models for fog computing based internet of things architectures with insurance and risk management applications. Eur. J. Oper. Res. (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.