Issue |
Math. Model. Nat. Phenom.
Volume 17, 2022
Recent Trends in Hyperbolic Equations in Physical Systems
|
|
---|---|---|
Article Number | 41 | |
Number of page(s) | 24 | |
DOI | https://doi.org/10.1051/mmnp/2022042 | |
Published online | 20 October 2022 |
- M. Aouadi, F. Passarella and V. Tibullo, Exponential stability in Mindlin’s Form II gradient thermoelasticity with microtemperatures of type III. Proc. Royal Soc. A 476 (2020) 20200459. [Google Scholar]
- M. Aouadi, A. Amendola and V. Tibullo, Asymptotic behavior in Form II Mindlin’s strain gradient theory for porous thermoelastic diffusion materials. J Therm. Stress. 59 (2020) 191–209. [CrossRef] [Google Scholar]
- M. Aouadi, Micro-inertia effects on existence of attractors for Form II Mindlin’s strain gradient viscoelastic plate. Nonlinear Differ. Equ. Appl. 28 (2021) 52. [CrossRef] [Google Scholar]
- M. Bachher and N. Sarkar, Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer. Waves Random Complex Media 29 (2019) 595–613. [CrossRef] [MathSciNet] [Google Scholar]
- V. Barbu, Nonlinear differential equations of monotone types in Banach spaces, vol. 190 of Springer Monographs in Mathematics. Springer, New York (2010). [CrossRef] [Google Scholar]
- S. Biswas, The propagation of plane waves in nonlocal visco-thermoelastic porous medium based on nonlocal strain gradient theory. Waves Random Complex Media. (2021) https://doi.org/10.1080/17455030.2021.1909780. [Google Scholar]
- S. Biswas, Surface waves in porous nonlocal thermoelastic orthotropic medium. Acta Mech. 231 (2020) 2741–2760. [CrossRef] [MathSciNet] [Google Scholar]
- P.S. Casas and R. Quintanilla, Exponential decay in one-dimensional porous-thermo-elasticity. Mech. Res. Commun. 32 (2005) 652–658. [CrossRef] [Google Scholar]
- W.L. Chan, R.S. Averback, D.G. Cahill and A. Lagoutchev, Dynamics of femtosecond laser-induced melting of silver. Phys. Rev. B. 78 (2008) 214107. [CrossRef] [Google Scholar]
- I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun. Part. Diff. Equ. 27 (2002) 1901–1951. [CrossRef] [Google Scholar]
- A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54 (1983) 4703–4710. [CrossRef] [Google Scholar]
- A.C. Eringen, Nonlocal continuum field theories. Springer, USA (2002). [Google Scholar]
- J.R. Fernandez, A. Magana, M. Masid and R. Quintanilla, Analysis for the strain gradient theory of porous thermoelasticity. J. Comput. Appl. Math. 345 (2019) 247–268. [CrossRef] [MathSciNet] [Google Scholar]
- L. Gearhart, Spectral theory for contraction semigroups on Hilbert space. Trans. Am. Math. Soc. 236 (1978) 385–385. [CrossRef] [Google Scholar]
- P. Grisvard, Caracterization de quelques espaces d’interpolation. Arch. Ratl. Mech. Anal. 25 (1967) 40–63. [CrossRef] [Google Scholar]
- Y.Y. Guo and M.R. Wang, Phonon hydrodynamics and its applications in nanoscale heat transfer. Phys. Rep. 595 (2015) 1–44. [CrossRef] [MathSciNet] [Google Scholar]
- R.A. Guyer and J.A. Krumhansl, Solution of the linearized phonon Boltzmann equation. Phys. Rep. 148 (1966) 765–778. [Google Scholar]
- D. Iesan, Thermoelastic Models of Continua. Springer (2004). [Google Scholar]
- D. Iesan, A gradient theory of porous elastic solids. Z. Angew. Math. Phys. 100 (2020) 1–18. [Google Scholar]
- D. Iesan, On the grade consistent theories of micromorphic solids. Am. Inst. Phys. Conf. Proc. 1329 (2011) 130–149. [Google Scholar]
- Y. Jun Yu, X. Tian and J. Liu, Size-dependent damping of a nanobeam using nonlocal thermoelasticity: extension of Zener, Lifshitz, and Roukes’ damping model. Acta Mech. 228 (2017) 1287–1302. [CrossRef] [MathSciNet] [Google Scholar]
- I. Lacheheb, S.A. Messaoudi and M. Zahri, Asymptotic stability of porous-elastic system with thermoelasticity of type III. Arab. J. Math. 10 (2021) 137–155. [CrossRef] [MathSciNet] [Google Scholar]
- G. Lebon, M. Torrisi and A. Valenti, A non-local thermodynamic analysis of second sound propagation in crystalline dielectrics. J. Phys: Condens. Matter 7 (1995) 1461–1474. [CrossRef] [Google Scholar]
- C.W. Lim, G. Zhang and J.N. Reddy, A Higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78 (2015) 298–313. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Liu and S. Zheng, Semigroups associated with dissipative systems. Volume 398 of CRC Research Notes in mathematics. Chapman & Hall, Boca Raton (1999) [Google Scholar]
- A. Maganna and R. Quintanilla, On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct. 43 (2006) 3414–3427. [CrossRef] [Google Scholar]
- R. Mindlin, Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16 (1964) 52–78. [Google Scholar]
- R. Mindlin, Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struc. 1 (1965) 414–438. [Google Scholar]
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York (1983). [CrossRef] [Google Scholar]
- J. Prüss, On the spectrum of Co-semigroups. Trans. Am. Math. Soc. 284 (1984) 847–847. [Google Scholar]
- J.N. Reddy and A.R. Srinivasa, Nonlinear theories of beams and plates accounting for moderate rotations and material length scales. Int. J. Nonl. Mech. 66 (2014) 43–53. [CrossRef] [Google Scholar]
- N. Sarkar and S.K. Tomar, Plane waves in nonlocal thermoelastic solid with voids. J. Therm. Stresses 42 (2019) 580–606. [CrossRef] [Google Scholar]
- H. Shahraki, H.T. Riahi, M. Izadinia and S.B. Talaeitaba, Mindlin’s strain gradient theory for vibration analysis of FG-CNT- reinforced composite nanoplates resting on Kerr foundation in thermal environment. J. Thermo. Comput. Mater. 34 (2021) 68–101. [CrossRef] [Google Scholar]
- X. Tian and Q. Xiong, Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur. J. Mech. A 60 (2016) 238–253. [CrossRef] [Google Scholar]
- D.Y. Tzou, Macro-to micro-scale heat transfer: the lagging behavior. CRC Press (1996). [Google Scholar]
- W. Yang and Z. Chen, Nonlocal dual-phase-lag heat conduction and the associated nonlocal thermal-viscoelastic analysis. Int. J. Heat Mass Transf. 156 (2020) 119–752. [Google Scholar]
- A.M. Zenkour and A.F. Radwan, A nonlocal strain gradient theory for porous functionally graded curved nanobeams under different boundary conditions. Phys. Mesomech. 23 (2020) 601–615. [CrossRef] [Google Scholar]
- P. Zhang and H. Qing, The consistency of the nonlocal strain gradient integral model in size-dependent bending analysis of beam structures. Int. J. Mech. Sci. 189 (2021) 105–991. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.