Open Access
Issue
Math. Model. Nat. Phenom.
Volume 17, 2022
Article Number 42
Number of page(s) 21
DOI https://doi.org/10.1051/mmnp/2022043
Published online 20 October 2022
  1. R.P.P. Almeida, M.J. Blua, J.R.S. Lopes and A.H. Purcell, Vector transmission of Xylella fastidiosa: applying fundamental knowledge to generate disease management strategies. Ann. Entomol. Soc. Am. 98 (2005) 775–786. [CrossRef] [Google Scholar]
  2. S. Anita and V. Capasso, A stabilization strategy for a reaction-diffusion system modelling a class of spatially structured epidemic systems (think globally, act locally). Nonlin. Anal. Real World Appl. 10 (2009) 2026–2035. [CrossRef] [Google Scholar]
  3. S. Anita, V. Capasso and S. Scacchi, Controlling the spatial spread of a Xylella epidemic. Bull. Math. Biol. 83 (2021) 32. [CrossRef] [PubMed] [Google Scholar]
  4. S. Anita, J. Casas and C. Suppo, Impulsive spatial control of invading pests by generalist predators. Math. Med. Biol. 31 (2014) 284–301. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. E. Beretta, V. Capasso, S. Scacchi, M. Brunetti and M. Montagna, Prevention and control of OQDS (olive quick decline syndrome) outbreaks caused by Xylella fastidiosa. J. Theor. Biol. 542 (2022) 111118. [CrossRef] [Google Scholar]
  6. H. Brezis, Sobolev Spaces and Partial Differential Equations. Springer (2011). [Google Scholar]
  7. M. Brunetti, V. Capasso, M. Montagna and E. Venturino, A mathematical model for Xylella fastidiosa epidemics in the Mediterranean regions. Promoting good agronomic practices for their effective control. Ecol. Modell. 432 (2020) 109204. [CrossRef] [Google Scholar]
  8. V. Capasso, Asymptotic stability for an integro-differential reaction-diffusion system. J. Math. Anal. Appl. 103 (1984) 575–588. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Carlucci, F. Lops, G. Marchi, L. Mugnai and G. Surico, Has Xylella fastidiosa “chosen” olive trees to establish in the Mediterranean basin? Phytopathol. Mediterr. 52 (2013) 541–544. [Google Scholar]
  10. D. Cornara, V. Cavalieri, C. Dongiovanni, G. Altamura, F. Palmisano, D. Bosco, F. Porcelli, R.P.P. Almeida and M. Saponari, Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants. J. Appl. Entomol. 141 (2017) 80–87. [CrossRef] [Google Scholar]
  11. L.R. Davranoglou, Zelus renardii (Kolenati, 1856), a New World reduviid discovered in Europe (Hemiptera: Reduviidae: Harpactorinae). Entomol. Mon. Mag. 147 (2011) 157–162. [Google Scholar]
  12. T. Elbaino, T. Yaseen, F. Valentini, I.E. Ben Moussa, V. Mazzoni and A.M. D'Onghia, Identification of three potential insect vectors of Xylella fastidiosa in Southern Italy. Phytopathol. Mediterr. 53 (2014) 328–332. [Google Scholar]
  13. J.D. Janse and A. Obradovic, Xylella fastidiosa: its biology, diagnosis, control and risks (Minireview). J. Plant. Pathol. 92 (2010) S1.35–S1.48. [Google Scholar]
  14. N. Lahbib et al., Zelus renardii roaming in Southern Italy. Insects 13 (2022) 158. [CrossRef] [PubMed] [Google Scholar]
  15. M.A. Lewis, S.V. Petrovskii and J.R. Potts, The Mathematics Behind Biological Invasions. Springer (2016). [Google Scholar]
  16. A. Liccardi, A. Fierro, F. Garganese, U. Picciotti and F. Porcelli, A biological control model to manage the vector and the infection of Xylella fastidiosa on olive trees. PLoS ONE 15 (2020) e0232363. [CrossRef] [PubMed] [Google Scholar]
  17. P.M. Matricardi, R.W. Dal Negro and R. Nisini, The first holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures. Pedriatr. Allergy Immunol. 31 (2020) 454–470. [CrossRef] [PubMed] [Google Scholar]
  18. A. Quarteroni and A. Valli, A Numerical Approximation of Partial Differential Equations. Springer (1994). [Google Scholar]
  19. R.A. Redak, A.H. Purcell, J.R.S. Lopes, M.J. Blua, R.F. Mizell and P.C. Andersen, The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology, applying fundamental knowledge to generate disease management. Annu. Rev. Entomol. 49 (2004) 243–270. [CrossRef] [PubMed] [Google Scholar]
  20. M. Saponari, D. Boscia, F. Nigro and G.P. Martelli, Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J. Plant. Pathol. 95 (2013) 659–668. [Google Scholar]
  21. K. Schneider, W. van der Werf, M. Cendoya, M. Maurits and J.A. Navas-Cortes, Impact of Xylella fastidiosa subspecies pauca in European olives. PNAS 117 (2020) 9250–9259. [CrossRef] [PubMed] [Google Scholar]
  22. P. Turchin, Complex Population Dynamics: A Theoretical/Empirical Synthesis. Princeton University Press (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.