Ecology and evolution
Open Access
Math. Model. Nat. Phenom.
Volume 17, 2022
Ecology and evolution
Article Number 28
Number of page(s) 19
Published online 18 August 2022
  1. P.A. Abrams and C.J. Walters, Invulnerable prey and the paradox of enrichment. Ecology 77 (1996) 1125–1133. [CrossRef] [Google Scholar]
  2. L.D. Berkovitz and N.G. Medhin, Nonlinear optimal control theory. CRC Press, Boca Raton, FL (2013). [Google Scholar]
  3. W.H. Fleming and R.W. Rishel, Vol. 1 of Deterministic and stochastic optimal control. Springer Science & Business Media (1975). [CrossRef] [Google Scholar]
  4. H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathe. Biosci. Eng. 6 (2009) 469–492. [CrossRef] [Google Scholar]
  5. P. Georgescu and H. Zhang, An impulsively controlled predator—pest model with disease in the pest. Nonlinear Anal. 11 (2010) 270–287. [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Jana and T.K. Kar, A mathematical study of a prey-predator model in relevance to pest control. Nonlinear Dyn. 74 (2013) 667–683. [CrossRef] [Google Scholar]
  7. H.R. Joshi, Optimal control of an hiv immunology model. Opt. Control Appl. Methods 23 (2002) 199–213. [CrossRef] [Google Scholar]
  8. T.K. Kar, A. Ghorai and S. Jana, Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide. J. Theor. Biol. 310 (2012) 187–198. [CrossRef] [Google Scholar]
  9. J. Mateus, P. Rebelo, S. Rosa, C. Silva and D.F.M. Torres, Optimal control of non-autonomous seirs models with vaccination and treatment. Discr. Continu. Dyn. Syst. 11 (2018) 187–198. [Google Scholar]
  10. U.K. Pahari and T.K. Kar, Conservation of a resource based fishery through optimal taxation. Nonlinear Dyn. 72 (2013) 591–603. [CrossRef] [Google Scholar]
  11. L.S. Pontryagin, Mathematical theory of optimal processes. CRC Press (1987). [Google Scholar]
  12. S. Rosa, P. Rebelo, C.M. Silva, H. Alves and P.G. Carvalho, Optimal control of the customer dynamics based on marketing policy. Appl. Math. Comput. 330 (2018) 42–55. [MathSciNet] [Google Scholar]
  13. E. Venturino, Ecoepidemiology: a more comprehensive view of population interactions. Math. Model. Natural Phenom. 11 (2016) 49–90. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  14. X. Wang and X. Song, Mathematical models for the control of a pest population by infected pest. Comput. Math. Appl. 56 (2008) 266–278. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.