Issue
Math. Model. Nat. Phenom.
Volume 17, 2022
Modelling and Simulations of Fluid Flows
Article Number 27
Number of page(s) 22
DOI https://doi.org/10.1051/mmnp/2022030
Published online 12 August 2022
  1. S.I. Abdelsalam, K.S. Mekheimer and A.Z. Zaher, Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: aneurysmal/stenosed segment. Chin. J. Phys. 67 (2020) 314–329. [CrossRef] [Google Scholar]
  2. S.I. Abdelsalam, J.X. Velasco-Hernandez and A.Z. Zaher, Electromagnetically modulated self-propulsion of swimming sperms via cervical canal. Biomech. Model. Mechanobiol. (2021), doi: 10.1007/s10237-020-01407-3. [Google Scholar]
  3. S.I. Abdelsalam, M.M. Bhatti, A. Zeeshan, A. Riaz and O.A. Bég, Metachronal propulsion of a magnetised particle-fluid suspension in a ciliated channel with heat and mass transfer. Phys. Scr. 94 (2019) 115301 [13 pages]. [CrossRef] [Google Scholar]
  4. Z. Asghar, N. Ali and M. Sajid, Analytical and numerical study of creeping flow generated by active spermatozoa bounded within a declined passive tract. Eur. Phys. J. Plus 134 (2019) 9. [CrossRef] [Google Scholar]
  5. Z. Asghar, N. Ali, O. Anwar Bég and T. Javed, Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition. Results Phys. 9 (2018) 682–691. [CrossRef] [Google Scholar]
  6. M.M. Bhatti, Biologically inspired intra-uterine nanofluid flow under the suspension of magnetized gold (Au) nanoparticles: applications in nanomedicine. Inventions 6 (2021) 28. [CrossRef] [Google Scholar]
  7. M.M. Bhatti, A. Riaz, L. Zhang, S.M. Sait and R. Ellahi, Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis. J. Therm. Anal. Calorim. 144 (2021) 2187–2202. [CrossRef] [Google Scholar]
  8. M.M. Bhatti, A. Zeeshan, M. Aleem Asif, R. Ellahi and S.M. Sait, Nonuniform pumping flow model for the couple stress particle-fluid under magnetic effects. Chem. Eng. Commun. (2021) doi: 10.1080/00986445.2021.1940156. [Google Scholar]
  9. P. Gaddum-Rosse, R.J. Blandau and J.B. Thiersch, Ciliary activity in the human and Macaca nemestrina oviduct. Am. J. Anatomy 138 (1973) 269–275. [CrossRef] [PubMed] [Google Scholar]
  10. S.K. Guha, H. Kaur and A.M. Ahmed, Mechanics of spermatic fluid transport in the vas deferens. Med. Biolog. Eng. 13 (1975) 518–522. [CrossRef] [PubMed] [Google Scholar]
  11. P. Jyavel, R. Jhorar, D. Tripathi and M. Azese, Electroosmotic flow of pseudoplastic nanoliquids via peristaltic pumping. J. Braz. Soc. Mech. Sci. Eng. 61 (2019) 7–18. [Google Scholar]
  12. G. Li, E. Lauga and A.M. Ardekan, Microswimming in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 297 (2021) 104655. [CrossRef] [Google Scholar]
  13. D. Li and K. Li, Talk about several time periodic pulse electroosmotic flow of Maxwell fluid in a circular microchannel. J. Appl. Math. Phys. 9 (2021) 617–634. [CrossRef] [Google Scholar]
  14. D. Lopez and E. Lauga, Dynamics of swimming bacteria at complex interfaces. Phys. Fluids 26 (2014) 071902. [CrossRef] [Google Scholar]
  15. R.A. Lyons, E. Saridogan and O. Djahanbakhch, The reproductive significance of human Fallopian tube cilia. Human Reproduct. Update 12 (2006) 363–372. [CrossRef] [PubMed] [Google Scholar]
  16. A. Mahdy and A. Hoshoudy, Two-phase mixed convection nanofluid flow of a dusty tangent hyperbolic past a nonlinearly stretching sheet. J. Egypt. Math. Soc. 27 (2019) 1–16. [CrossRef] [Google Scholar]
  17. F.Y. Nakano, R.D.B.F. Leão and S.C. Esteves, Insights into the role of cervical mucus and vaginal pH in unexplained infertility. Med. Express (S~ao Paulo) 2 (2015). [Google Scholar]
  18. G. Radhakrishnamacharya and R. Sharma, Motion of a self-propelling micro-organism in a channel under peristalsis: effects of viscosity variation. Nonlinear Anal.: Modell. Control 12 (2007) 409–418. [CrossRef] [Google Scholar]
  19. K. Ramesh, A. Patel and M. Rawal, Electroosmosis and transverse magnetic effects on radiative tangent hyperbolic nanofluid flow through porous medium. Int. J. Ambient Energy (2021) 1–8. [CrossRef] [Google Scholar]
  20. M. Rizwan, M. Hassan, O.D. Makinde, M.M. Bhatti and M. Marin, Rheological modeling of metallic oxide nanoparticles containing non-newtonian nanofluids and potential investigation of heat and mass flow characteristics. Nanomaterials 12 (2022) 1237. [CrossRef] [PubMed] [Google Scholar]
  21. N. Saleem and S. Munawar, Entropy analysis in cilia driven pumping flow of hyperbolic tangent fluid with magnetic field effects. Fluid Dyn. Res. 52 (2020) 025503 [19 pages]. [CrossRef] [MathSciNet] [Google Scholar]
  22. S.S. Suarez and A.A. Pacey, Sperm transport in the female reproductive tract. Human Reproduct. Update 12 (2006) 23–37. [CrossRef] [PubMed] [Google Scholar]
  23. S.S. Suarez, Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 363 (2016) 185–194. [CrossRef] [PubMed] [Google Scholar]
  24. A. Shahid, M.M. Bhatti, R. Ellah and K.S. Mekheimer, Numerical experiment to examine activation energy and bi-convection Carreau nanofluid flow on an upper paraboloid porous surface: application in solar energy. Sustain. Energy Technolog. Assess. 52 (2022) 102029. [CrossRef] [Google Scholar]
  25. A. Tanveer, S. Mahmood, T. Hayat and A. Alsaedi, On electroosmosis in peristaltic activity of MHD non-Newtonian fluid. Alexandria Eng. J. 60 (2021) 3369–3377. [CrossRef] [Google Scholar]
  26. A. Walait, A.M. Siddiqui and M.A. Rana, Mathematical assessment of the spermatozoa transport through couple stress fluid in an asymmetric human cervical canal. Theory Biosci. 139 (2020) 235–251. [CrossRef] [PubMed] [Google Scholar]
  27. L. Zhu, E. Lauga and L. Brandt, Low-Reynolds-number swimming in a capillary tube. J. Fluid Mech. 726 (2013) 285–311. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.