Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 17, 2022
|
|
---|---|---|
Article Number | 45 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/mmnp/2022047 | |
Published online | 23 December 2022 |
- M.J. Ablowitz, M.A. Ablowitz and P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, New York (1991). [Google Scholar]
- N. Akhmediev, V.M. Eleonskii and N.E. Kulagin, Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions. Sov. Phys. JETP 62 (1985) 894–899. [Google Scholar]
- N. Akhmediev, A. Ankiewicz and M. Taki, Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373 (2009) 675–678. [CrossRef] [Google Scholar]
- Y. Cao, J.S. He, Y. Cheng et al., Reductions of the (4+1)-dimensional Fokas equation and their solutions. Nonlinear Dyn. 99 (2020) 3013–3028. [CrossRef] [Google Scholar]
- L. Cheng and Y. Zhang, Lump-type solutions for the (4+1)-dimensional Fokas equation via symbolic computations. Mod. Phys. Lett. B 31 (2017) 1750224. [CrossRef] [Google Scholar]
- A.H. Chen, J. Yan and Y.R. Guo, Dynamic properties of interactional solutions for the (4+1)-dimensional Fokas equation. Nonlinear Dyn. 105 (2021) 3489–3502. [CrossRef] [Google Scholar]
- W. Cui and Z. Zhaqilao, Multiple rogue wave and breather solutions for the (3+1)-dimensional KPI equation. Comput. Math. Appl. 76 (2018) 1099–1107. [CrossRef] [MathSciNet] [Google Scholar]
- E. Date, M. Jimbo, M. Kashiwara et al., Transformation groups for soliton equations-Euclidean Lie algebras and reduction of the KP hierarchy. Publ. Res. I. Math. Sci. 18 (1982) 1077–1110. [CrossRef] [Google Scholar]
- A. Davey and K. Stewartson, On three-dimensional packets of surface waves. Proc. R. Soc. Lond. Ser. A 338 (1974) 101–110. [CrossRef] [Google Scholar]
- C. Ding, Y. Gao and G. Deng, Breather and hybrid solutions for a generalized (3+1)-dimensional B-type Kadomtsev- Petviashvili equation for the water waves. Nonlinear Dyn. 97 (2019) 2023–2040. [CrossRef] [Google Scholar]
- K. Dysthe, H.E. Krogstad and P. Muller, Oceanic rogue waves. Annu. Rev. Fluid. Mech. 40 (2008) 287–310. [CrossRef] [Google Scholar]
- A.S. Fokas, Integrable nonlinear evolution partial differential equations in 4+2 and 3+1 dimensions. Phys. Rev. Lett. 96 (2006) 190201. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- R. Hirota, The Direct Method in Soliton Theory. Cambridge University Press, New York (2004). [Google Scholar]
- D.J. Kedziora, A. Ankiewicz and N. Akhmediev, Second-order nonlinear Schrodinger equation breather solutions in the degenerate and rogue wave limits. Phys. Rev. E 85 (2012) 066601. [CrossRef] [PubMed] [Google Scholar]
- C. Kharif and E. Pelinovsky, Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B. Fluids 22 (2003) 603–634. [CrossRef] [MathSciNet] [Google Scholar]
- B. Kibler, J. Fatome, C. Finot et al., The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6 (2010) 790–795. [CrossRef] [Google Scholar]
- W. Li and Y. Liu, To construct lumps, breathers and interaction solutions of arbitrary higher-order for a (4+1)-dimensional Fokas equation. Mod. Phys. Lett. B 34 (2020) 2050221. [CrossRef] [Google Scholar]
- W. Liu, A.M. Wazwaz and X. Zheng, Families of semi-rational solutions to the Kadomtsev-Petviashvili I equation. Commun. Nonlinear Sci. Numer. Simulat. 67 (2019) 480–491. [CrossRef] [Google Scholar]
- S.Y. Lou, X. Hu and Y. Chen, Nonlocal symmetries related to Bäcklund transformation and their applications. J. Phys. A-Math. Theor. 45 (2012) 155209. [CrossRef] [Google Scholar]
- W.X. Ma, Comment on the 3+1 dimensional Kadomtsev-Petviashvili equations. Commun. Nonlinear. Sci. Numer. Simulat. 16 (2011) 2663–2666. [CrossRef] [Google Scholar]
- Y.L. Ma, A.M. Wazwaz and B.Q. Li, A new (3+1)-dimensional Kadomtsev-Petviashvili equation and its integrability, multiplesolitons, breathers and lump waves. Math. Comput. Simulat. 187 (2021) 505–519. [CrossRef] [Google Scholar]
- W.X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379 (2015) 1975–1978. [CrossRef] [MathSciNet] [Google Scholar]
- W.X. Ma and Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264 (2018) 2633–2659. [Google Scholar]
- S.V. Manakov and V.E. Zakharov, Two dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys. Lett. A 63 (1977) 205–C206. [CrossRef] [Google Scholar]
- Y. Ohta and J.K. Yang, General high-order rogue waves and their dynamics in the nonlinear Schrodinger equation. Proc. R. Soc. Lond. Ser. A 468 (2012) 1716–1740. [Google Scholar]
- J.G. Rao, A.S. Fokas and J.S. He, Doubly localized two-dimensional rogue waves in the Davey-Stewartson I equation. J. Nonlinear Sci. 31 (2021) 1–44. [CrossRef] [Google Scholar]
- J.G. Rao, J.S. He and D. Mihalache, Doubly localized rogue waves on a background of dark solitons for the Fokas system. Appl. Math. Lett. 121 (2021) 107435. [CrossRef] [Google Scholar]
- S. Sarwar, New soliton wave structures of nonlinear (4+1)-dimensional Fokas dynamical model by using different methods. Alex. Eng. J. 60 (2021) 795–803. [CrossRef] [Google Scholar]
- M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifold. North-Holland Math. Stud. 81 (1983) 259–271. [CrossRef] [Google Scholar]
- J. Satsuma and M.J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20 (1979) 1496–1503. [CrossRef] [MathSciNet] [Google Scholar]
- D.R. Solli, C. Ropers, P. Koonath et al., Optical rogue waves. Nature 450 (2007) 1054–1057. [CrossRef] [PubMed] [Google Scholar]
- W. Tan, Z.D. Dai, J.L. Xie et al., Parameter limit method and its application in the (4+1)-dimensional Fokas equation. Comput. Math. Appl. 75 (2018) 4214–4220. [CrossRef] [MathSciNet] [Google Scholar]
- X.B. Wang, S.F. Tian, L.L. Feng et al., On quasi-periodic waves and rogue waves to the (4+1)-dimensional nonlinear Fokas equation. J. Math. Phys. 59 (2018) 073505. [CrossRef] [MathSciNet] [Google Scholar]
- A.M. Wazwaz, A variety of multiple-soliton solutions for the integrable (4+1)-dimensional Fokas equation. Wave. Random. Complex. 31 (2021) 46–56. [CrossRef] [Google Scholar]
- P. Xia, Y. Zhang, H. Zhang et al., Rogue lumps on a background of kink waves for the Bogoyavlenskii-Kadomtsev-Petviashvili equation. Mod. Phys. Lett. B (2022) 2150629. [CrossRef] [Google Scholar]
- P. Xia, Y. Zhang, H. Zhang et al., Some novel dynamical behaviours of localized solitary waves for the Hirota-Maccari system. Nonlinear Dyn. (2022) 1–9. [PubMed] [Google Scholar]
- J. Yang, Nonlinear waves in integrable and nonintegrable systems. SIAM. Philadelphia (2010). [Google Scholar]
- Z.Z. Yang and Z.Y. Yan, Symmetry groups and exact solutions of new (4+1)-dimensional Fokas equtaion. Commun. Theor. Phys. 51 (2009) 876–880. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Zhang, J.W. Yang, K.W. Chow et al., Solitons, breathers and rogue waves for the coupled Fokas-Lenells system via Darboux transformation. Nonlinear Anal-Real. 33 (2017) 237–252. [CrossRef] [Google Scholar]
- X. Zhang, L. Wang, C. Liu et al., High-dimensional nonlinear wave transitions and their mechanisms. Chaos 30 (2020) 113107. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- W.J. Zhang and T.C. Xia, Solitary wave, M-lump and localized interaction solutions to the (4+1)-dimensional Fokas equation. Phys. Scr. 95 (2020) 045217. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.