Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 8
Number of page(s) 15
Section Mathematical physiology and medicine
Published online 23 March 2023
  1. S.C. Brüningk, I. Rivens, C. Box, U. Oelfke and G. Ter Haar, 3D tumour spheroids for the prediction of the effects of radiation and hyperthermia treatments. Sci. Rep. 10 (2020) 1. [CrossRef] [Google Scholar]
  2. A.C. Burton, Rate of growth of solid tumors as a problem of diffusion. Growth 30 (1966) 157. [PubMed] [Google Scholar]
  3. H.M. Byrne, Dissecting cancer through mathematics: from the cell to animal model. Cancer 10 (2010) 221. [Google Scholar]
  4. H.M. Byrne, Mathematical biomedicine and modeling avascular tumor growth. In A.V. Antoniouk and A.R.V. Melnik, editors, Mathematics and Life Sciences, chapter 12, page 279. De Groyter, Germany (2012). [CrossRef] [Google Scholar]
  5. S.R. de Groot and P. Mazur, Non-equilibrium Thermodynamics. Dover Publications (1984). [Google Scholar]
  6. D. Drasdo and S. Höhme, Indvividual-based approach to birth and death in avascular tumors. Math. Comput. Model. 37 (2003) 1163. [CrossRef] [Google Scholar]
  7. J.H. Ferziger and M. Perić, Computational methods for fluid dynamics. Springer-Verlag, Berlin (2002). [CrossRef] [Google Scholar]
  8. J.P. Freyer and R.M. Sutherland, Prolifirative and clonogenic heterogeneity of cells from EMT6/Ro multicellular spheroids induced by the glucose and oxygen supply. Cancer Res. 46 (1986) 3513. [PubMed] [Google Scholar]
  9. J.P. Freyer and R.M. Sutherland, Regulation of growth saturation and development of necrosis inEMT6/Ro milticellular spheroids by the glucose and oxygen supply. Cancer Res. 46 (1986) 3504. [PubMed] [Google Scholar]
  10. P. Gerlee, The model muddle: In search of tumor growth laws. Cancer Res. 73 (2003) 2407. [Google Scholar]
  11. P. Gray and S.K. Scott, Chemical Oscillations and Instabilities:Non-linear Chemical Kinetics. Clarendon Press, Oxford (1994). [Google Scholar]
  12. H.P. Greenspan, Models for growth of a solid tumor by diffusion. Stud. Appl. Math 52 (1972) 317. [CrossRef] [Google Scholar]
  13. P. Grindrod, Patterns and Waves. Oxford University Press, New York (1991). [Google Scholar]
  14. G. Hochman, Y. Kogan, V. Vainstein, O. Shukron, A. Lankenau, B. Boysen, R. Lamb, T. Berkman, R. Clarke, C. Duschl and Z. Agur, Evidence for power law tumor growth and implications for cancer radiotherapy (2012). [Google Scholar]
  15. Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell and J.P. Freyer, A multiscale model for avascular tumor growth. Biophys. J. 89 (2005) 3884. [CrossRef] [Google Scholar]
  16. W.V. Mayneord, On a law of growth of Jensen’s rat sarcoma. Am. J. Cancer 16 (1932) 841. [Google Scholar]
  17. W. Mueller-Klieser, J.P. Freyer and R.M. Sutherland, Influence of glucose and oxygen supply conditions oxygenation ofmulticellular spheroids. Br. J. Cancer 53 (1986) 345. [CrossRef] [PubMed] [Google Scholar]
  18. J.D. Murray, Mathematical Biology. Springer Verlag (1989). [CrossRef] [Google Scholar]
  19. K.-A. Norton and A.S. Popel, An agent-based model of cancer stem cell initiated avasclular tumorgrowth and metastasis: the effect of seeding frequency and location. J. R. Soc. Interface 11 (2017) 20140640. [CrossRef] [PubMed] [Google Scholar]
  20. Notice that in Freyer et al. Cancer Res. 46 (1986) 3504, their Figure 3 the symbols are reversed giving the erroneous conclusion that rim thickness is decreasing with increasing nutrient concentration. [PubMed] [Google Scholar]
  21. J.M. Prewitt L.A. Dethlefsen and M.L. Mendelsohn, Analysis of tumor growth curves. J. Natl. Cancer Inst. 40 (1968) 389. [CrossRef] [PubMed] [Google Scholar]
  22. F.L. Ribeiro, R.V. dos Santos and A.S. Mata, Fractal dimension and universality in avascular tumor growth. Phys. Rev. E 95 (2017) 042406. [CrossRef] [PubMed] [Google Scholar]
  23. T. Roose, S.J. Chapman and P.K. Maini, Mathematical models of avascular tumor growth. SIAM Rev. 49 (2007) 179. [CrossRef] [MathSciNet] [Google Scholar]
  24. S. Sahoo and A. Sahoo and S.F.C. Shearer, Stochastic modelling of avascular tumor growth and therapy. Phys. Scr. 83 (2011) 045801. [CrossRef] [Google Scholar]
  25. J.P. Ward and J.R. King, Mathematical modelling of avascular-tumour growth. Math. Med. and Biol. 14 (1997) 39. [CrossRef] [Google Scholar]
  26. J.P. Ward and J.R. King, Mathematical modelling of avascular-tumour growth II: Modelling growth saturation. Math. Med. Biol. 16 (1999) 171. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.