Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 11
Number of page(s) 18
Section Mathematical physiology and medicine
Published online 23 March 2023
  1. G. Abi Younes and N. El Khatib. Mathematical modeling of inflammatory processes of atherosclerosis. Math. Model. Nat. Pheno. 17 (2022) 5–43. [CrossRef] [EDP Sciences] [Google Scholar]
  2. L. Ai and K. Vafai, A coupling model for macromolecule transport in a stenosed arterial wall. Int .J. Heat. Mass. Trans. 49 (2006) 1568–1591. [CrossRef] [Google Scholar]
  3. J. Auer and R. Berent, Alirocumab as add-on therapy to statins: current evidence and clinical potential. Prog. Cardiovasc. Dis. 12 (2018) 191–202. [Google Scholar]
  4. L. Badimon, T. Padró and G. Vilahur, Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur. Heart. J-Acute. Ca. 1 (2012) 60–74. [CrossRef] [PubMed] [Google Scholar]
  5. R.Y. Ball, E.C. Stowers, J.H. Burton, N.R.B. Cary, J.N. Skepper and M.J. Mitchinson, Evidence that the death of macrophage foam cells contributes to the necrotic core of atheroma. Atherosclerosis. 114 (1995) 45–54. [CrossRef] [PubMed] [Google Scholar]
  6. M. Banach, C. Serban, A. Sahebkar, D.P. Mikhailidis, S. Ursoniu, K.K. Ray and P.W. Serruys, Impact of statin therapy on coronary plaque composition: a systematic review and meta-analysis of virtual histology intravascular ultrasound studies. BMC Med. 13 (2015) 1–21. [CrossRef] [PubMed] [Google Scholar]
  7. S. Bellosta, A. Corsini, Statin drug interactions and related adverse reactions: an update. Expert. Opin. Drug. Saf. 17 (2018) 25–37. [CrossRef] [PubMed] [Google Scholar]
  8. M.A.K. Bulelzai and J.L.A. Dubbeldam, Long time evolution of atherosclerotic plaques. J. Theor. Biol. 297 (2012) 1–10. [CrossRef] [Google Scholar]
  9. V. Calvez, A. Ebde, N. Meunier and A. Raoult, Mathematical modelling of the atherosclerotic plaque formation. ESAIM: Proc. 8 (2009). [Google Scholar]
  10. A. Causevic-Ramosevac and S. Semiz, Drug interactions with statins. Acta. Pharm. 63 (2013) 277–293. [CrossRef] [PubMed] [Google Scholar]
  11. A.D. Chalmers, A. Cohen, C.A. Bursill and M.R. Myerscough, Bifurcation and dynamics in a mathematical model of early atherosclerosis. J. Math. Biol. 71 (2015) 1451–1480. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  12. A.D. Chalmers, C.A. Bursill and M.R. Myerscough, Nonlinear dynamics of early atherosclerotic plaque formation may determine the efficacy of high density lipoproteins (HDL) in plaque regression. PLOS ONE 12 (2017) e0187674. [Google Scholar]
  13. K.L. Chambers, M.G. Watson and M.R. Myerscough. A lipid-structured model of atherosclerosis with macrophage proliferation. Preprint (2022). [Google Scholar]
  14. C. Chen, Y. Gu, J. Tu, X. Guo and D. Zhang, Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study. Ultrasonics 66 (2016) 54–64. [CrossRef] [PubMed] [Google Scholar]
  15. S. Chung and K. Vafai. Effect of the fluid-structure interactions on low-density lipoprotein transport within a multi-layered arterial wall. J. Biomech. 45 (2012) 371–381. [CrossRef] [Google Scholar]
  16. M. Cilla, E. Pena and M.A. Martinez, Mathematical modelling of atheroma plaque formation and development in coronary arteries. J.R. Soc. Interface. 11 (2014) 20130866. [CrossRef] [PubMed] [Google Scholar]
  17. M. Dabagh, P. Jalali and J.M. Tarbell. The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension. Am. J. Physiol. Heart. Circ. Physiol. 297 (2009) H983–H996. [CrossRef] [PubMed] [Google Scholar]
  18. J.T. Davies, S.F. Delfine, C.E. Feinberg, M.F. Johnson, V.L. Nappi, J.T. Olinger, A.P. Schwab and H.I. Swanson, Current and emerging uses of statins in clinical therapeutics: a review. Lipid. Insights 9 (2016) 13–29. [Google Scholar]
  19. H.S. El-Sawy, A.M. Al-Abd, T.A. Ahmed et al., Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS. Nano. 12 (2018) 10636–10664. [CrossRef] [PubMed] [Google Scholar]
  20. N. El Khatib, O. Kafi, A. Sequeira, S. Simakov, Y. Vassilevski and V. Volpert. Mathematical modelling of atherosclerosis. Math. Model. Nat. Pheno. 14 (2019) 603. [CrossRef] [EDP Sciences] [Google Scholar]
  21. H. Esterbauer, G. Striegl, H. Puhl and M. Rotheneder, Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free. Radic. Res. Commun. 6 (1989) 67–75. [CrossRef] [PubMed] [Google Scholar]
  22. D.W. Faltaos, S. Urien, V. Carreau, M. Chauvenet, J.S. Hulot, P. Giral, E. Bruckert and P. Lechat, Use of an indirect effect model to describe the LDL cholesterol-lowering effect by statins in hypercholesterolaemic patients. Fund. Clin. Pharmacol. 20 (2006) 321–330. [CrossRef] [PubMed] [Google Scholar]
  23. S. Fazli, E. Shirani and M.R. Sadeghi, Numerical simulation of LDL mass transfer in a common carotid artery under pulsatile flows. J. Biomech. 44 (2011) 68–76. [CrossRef] [Google Scholar]
  24. W.J. Fu, M.T. Chen, L.J. Ou, T. Li, X. Chang, R.L. Huang, J. Zhang and Z. Zhang, Xiaoyaosan prevents atherosclerotic vulnerable plaque formation through heat shock protein/glucocorticoid receptor axis-mediated mechanism. Am. J. Transl. Res. 11 (2019) 5531–5545. [Google Scholar]
  25. R.G. Gerrity. The role of the monocyte in atherogenesis: II. Migration of foam cells from atherosclerotic lesions. Am. J. Pathol. 103 (1981) 191–200. [Google Scholar]
  26. L. Gonzalez and B.L. Trigatti, Macrophage apoptosis and necrotic core development in atherosclerosis: a rapidly advancing field with clinical relevance to imaging and therapy. Can. J. Cardio. 33 (2017) 303–312. [CrossRef] [Google Scholar]
  27. W. Hao and A. Friedman, The LDL-HDL profile determines the risk of atherosclerosis: a mathematical model. PLOS ONE 9 (2014) e90497. [Google Scholar]
  28. W. Hai-Liang, W. Shou-Tao and D.O. Pharmacy, Effects of rosuvastatin on macrophage polarization in atherosclerosis. J. Prac. Phar. Clin. Reme. 3 (2018) 42–44. [Google Scholar]
  29. H.A. Himburg, D.M. Grzybowski, A.L. Hazel, J.A. Lamack and X.M. Li, Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol.-Heart. C 286 (2004) H1916–H1922. [CrossRef] [PubMed] [Google Scholar]
  30. M. Hu and B. Tomlinson, Evaluation of the pharmacokinetics and drug interactions of the two recently developed statins, rosuvastatin and pitavastatin. Expert. Opin. Drug. Met. 10 (2014) 51–65. [CrossRef] [PubMed] [Google Scholar]
  31. D.S. Hwang, E.S. Shin, S.J. Kim, J.H. Lee, J.M. Kim and S.G. Lee, Early differential changes in coronary plaque composition according to plaque stability following statin initiation in acute coronary syndrome: classification and analysis by intravascular ultrasound-virtual histology. Yonsei. Med. J. 54 (2013) 336–344. [CrossRef] [PubMed] [Google Scholar]
  32. W.J. Jusko and H.C. Ko, Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin. Pharmacol. Ther. 56 (1994) 406–419. [CrossRef] [PubMed] [Google Scholar]
  33. M. Kawasaki, K. Sano, M. Okubo, H. Yokoyama, Y. Ito, I. Murata, K. Tsuchiya, S. Minatoguchi, X. Zhou, H. Fujita and H. Fujiwara, Volumetric quantitative analysis of tissue characteristics of coronary plaques after statin therapy using threedimensional integrated backscatter intravascular ultrasound. J. Am. Coll. Cardiol. 45 (12) (2005) 1946–1953. [CrossRef] [Google Scholar]
  34. I.V. Kirillova, E.L. Kossovich, R.A. Safonov, N.O. Chelnokova, A.A. Golyadkina and M.S. Shevtsova, Finite element modeling of atherosclerotic plaque evolution. 2016 3rd International Conference on Information Science and Control Engineering (ICISCE). IEEE (2016) 973–977. [CrossRef] [Google Scholar]
  35. H.S. Kruth, W. Huang, I. Ishii and W.Y. Zhang, Macrophage foam cell formation with native low density lipoprotein. J. Biol. Chem. 77 (2002) 34573–34580. [CrossRef] [Google Scholar]
  36. W. Lei, J. Hu, Y. Liu, W. Liu and X. Chen, Numerical evaluation of high-intensity focused ultrasound-induced thermal lesions in atherosclerotic plaques. Math. Biosci. Eng. 18 (2021) 1154–1168. [CrossRef] [MathSciNet] [Google Scholar]
  37. K. Ley, Y.I. Miller and C.C. Hedrick, Monocyte and macrophage dynamics during atherogenesis. Thromb. Vasc. Biol. 31 (2011) 1506–1516. [CrossRef] [PubMed] [Google Scholar]
  38. J. Li, D. Li, D. Yang, H.L. Hang, Y.W. Wu, R. Yao, X.Y. Chen, Y.L. Xu, W. Dai, D. Zhou and X.H. Zhao, Irregularity of carotid plaque surface predicts subsequent vascular event: a MRI study. J Magn. Reson. Imaging. 52 (2020) 185–194. [CrossRef] [PubMed] [Google Scholar]
  39. P. Libby, Inflammation in atherosclerosis. Nature. 420 (2002) 868–874. [CrossRef] [PubMed] [Google Scholar]
  40. P. Linsel-Nitschke, A.R. Tall, HDL as a target in the treatment of atherosclerotic cardio vascular disease. Nat. Rev. Drug. Discov. 4 (2005) 193–205. [CrossRef] [PubMed] [Google Scholar]
  41. B. Martyn, Jean Butler Anti-inflammatory drugs in experimental atherosclerosis Part 1. Relative potencies for inhibiting plaque formation. Atherosclerosis 17 (1973) 515–522. [CrossRef] [PubMed] [Google Scholar]
  42. R.Q. Migrino, M. Bowers, L. Harmann, R. Prost and J.F. LaDisa, Carotid plaque regression following 6-month statin therapy assessed by 3T cardiovascular magnetic resonance: comparison with ultrasound intima media thickness. J. Cardiovasc. Magn. R. 13 (2011) 1–10. [CrossRef] [Google Scholar]
  43. A.C. Newby, S.J. George, Y. Ismail, J.L. Johnson, G.B. Sala-Newby and A.C. Thomas, Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb. Haemostasis. 101 (2009) 1006–1011. [CrossRef] [PubMed] [Google Scholar]
  44. A. Nishizawa, C.K. Suemoto, D.S. Farias-Itao, F.M. Campos, K.C. Silva, M.S. Bittencourt and C.A. Pasqualucci, Morphometric measurements of systemic atherosclerosis and visceral fat: Evidence from an autopsy study. PLOS ONE 12 (2017) e0186630. [Google Scholar]
  45. C. Pichardo-Almarza and V. Diaz-Zuccarini, From PK/PD to QSP: understanding the dynamic effect of cholesterol-lowering drugs on atherosclerosis progression and stratified medicine. Curr. Pharm. Des. 22 (2016) 6903–6910. [Google Scholar]
  46. M.F. Piepoli, A.W. Hoes, S. Agewall, C. Albus, C. Brotons, A.L. Catapano and S. Binno, European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart. J. 37 (2016) 2315–2381. [CrossRef] [PubMed] [Google Scholar]
  47. D.S. Pleouras, A.I. Sakellarios, P. Tsompou, V. Kigka, S. Kyriakidis, S. Rocchiccioli, D. Neglia, J. Knuuti, G. Pelosi, L.K. Michalis and D.I. Fotiadis, Simulation of atherosclerotic plaque growth using computational biomechanics and patient-specific data. Sci. Rep-Uk. 10 (2020) 1–14. [CrossRef] [Google Scholar]
  48. M. Prosi, P. Zunino, K. Perktold and A. Quarteroni, Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J. Biomech. 38 (2005) 903–917. [CrossRef] [Google Scholar]
  49. A. Roohi, Mathematical Approach of MSE in Thermo-poro-elastic Conditions Improves Decision Making to Use Bore Hole Enlargement (BHE). University of Leoben (2017). [Google Scholar]
  50. A.A. Rostam-Alilou, H.R. Jarrah, A. Zolfagharian, et al., Fluid-structure interaction (FSI) simulation for studying the impact of atherosclerosis on hemodynamics, arterial tissue remodeling, and initiation risk of intracranial aneurysms. Biomech. Model. Mechan. 21 (2022) 1393–1406. [CrossRef] [PubMed] [Google Scholar]
  51. A. Sakellarios, C.V. Bourantas, S.L. Papadopoulou, Z. Tsirka, T.D. Vries, P.H. Kitslaar and H.M. Garcia-Garcia, Prediction of atherosclerotic disease progression using LDL transport modelling: a serial computed tomographic coronary angiographic study. Eur. Heart. J-Card. Imag. 18 (2016) 11–18. [Google Scholar]
  52. W.E. Schiesser, PDE models for atherosclerosis computer implementation in R.J. synthesis lectures on biomedical engineering. Biomed. Eng. Lett. 11 (2018) 1–141. [Google Scholar]
  53. M.A. Schwartz, D. Vestweber and M. Simons. A unifying concept in vascular health and disease. Science 360 (2018) 270–271. [CrossRef] [PubMed] [Google Scholar]
  54. T. Silva, W. Jäger, M. Neuss-Radu and A. Sequeira, Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability. J. Theor. Biol. 496 (2020) 496–515. [Google Scholar]
  55. N.J. Stone, J.G. Robinson, A.H. Lichtenstein, C.N.B. Merz, C.B. Blum, R.H. Eckel, A.C. Goldberg, D. Gordon, D. Levy, D.M. Lloyd-Jones, P. Mcbride, J.S. Schwartz, S.T. Shero, S.C. Smith, K. Watson, P.W.F. Wilson and American College of Cardi- ology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63 (2014) 2889–2934. [CrossRef] [Google Scholar]
  56. S. Sugiyama, K. Niizuma, T. Nakayama et al. Relative residence time prolongation in intracranial aneurysms: a possible association with atherosclerosis. Neurosurgery 73 (2013) 767–776. [CrossRef] [PubMed] [Google Scholar]
  57. B.A. Taylor, G. Panza, L.S. Pescatello S. Chipkin, D. Gipe, W.P. Shao, C.M. White and P.D. Thompson, Serum PCSK9 levels distinguish individuals who do not respond to high-dose statin therapy with the expected reduction in LDL-C. J. Lipids. 2014 (2014). [CrossRef] [Google Scholar]
  58. D. Velican and C. Velican, Coronary anatomy and microarchitecture as related to coronary atherosclerotic involvement. Rev. Méd. Interne. 27 (1989) 257–262. [Google Scholar]
  59. N. Yang and K. Vafai, Modeling of low-density lipoprotein (LDL) transport in the artery-effects of hypertension. Int. J. Heat. Mass. Trans. 49 (2006) 850–867. [CrossRef] [Google Scholar]
  60. Y. Yuan, P. Li and J. Ye, Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein. Cell. 3 (2012) 173–181. [CrossRef] [PubMed] [Google Scholar]
  61. B. Zhao, Y. Li, C. Buono, S.W. Waldo, N.L. Jones, M. Mori and H.S. Kruth, Constitutive receptor independent low density lipoprotein uptake and cholesteol accumulation by macrophages differentiated from human monocytes with macrophage-colonystimulating factor (M-CSF). J. Biol. Chem. 281 (2006) 15757–15762. [CrossRef] [Google Scholar]
  62. D. Zhou, J. Li, D. Liu, L.Y. Ji, N.Q. Wang, D. Jie, J.C. Wang, M. Ye and X.H. Zhao, Irregular surface of carotid atherosclerotic plaque is associated with ischemic stroke: a magnetic resonance imaging study. J. Geriatr. Cardiol. 16 (2019) 872–879. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.