Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 12
Number of page(s) 23
Section Population dynamics and epidemiology
Published online 28 April 2023
  1. M. Broom and J. Rychtář, Evolutionary games with sequential decisions and dollar auctions. Dyn. Games Appl. 8 (2018) 211–231. [Google Scholar]
  2. M. Broom and J. Rychtář, A general framework for analysing multiplayer games in networks using territorial interactions as a case study. J. Theor. Biol. 302 (2012) 70–80. [CrossRef] [Google Scholar]
  3. M. Broom, M. Johanis and J. Rychtář, The effect of fight cost structure on fighting behaviour involving simultaneous decisions and variable investment levels. J. Math. Biol. 76 (2018) 457–482. [Google Scholar]
  4. M. Broom, K. Pattni and J. Rychtář, Generalized social dilemmas: the evolution of cooperation in populations with variable group size. Bull. Math. Biol. 81 (2019) 4643–4674. [Google Scholar]
  5. X. Chen, A. Szolnoki and M. Perc, Probabilistic sharing solves the problem of costly punishment. New J. Phys. 16 (2014) 083016 [Google Scholar]
  6. H. Cheng, X. Meng, T. Hayat, A. Hobiny and T. Zhang, Stability and bifurcation analysis for a nitrogen-fixing evolutionary game with environmental feedback and discrete delays. Int. J. Bifurc. Chaos 32 (2022) 2250027 [CrossRef] [Google Scholar]
  7. R. Cressman and V. Křivan, Bimatrix games that include interaction times alter the evolutionary outcome: the Owner–Intruder game. J. Theor. Biol. 460 (2019) 262–273. [Google Scholar]
  8. H. De Weerd and R. Verbrugge, Evolution of altruistic punishment in heterogeneous populations. J. Theor. Biol. 290 (2011) 88–103. [Google Scholar]
  9. Y. Fang, T.P. Benko, M. Perc, H. Xu and Q. Tan, Synergistic third-party rewarding and punishment in the public goods game. Proc. R. Soc. A 475 (2019) 20190349 [CrossRef] [PubMed] [Google Scholar]
  10. E. Fehr and U. Fischbacher, Third-party punishment and social norms. Evol. Hum. Behav. 25 (2004) 63–87. [Google Scholar]
  11. C. Hauert, C. Saade and A. McAvoy, Asymmetric evolutionary games with environmental feedback. J. Theor. Biol. 462 (2019) 347–360. [Google Scholar]
  12. J. Hofbauer, Minmax via replicator dynamics. Dyn. Games Appl. 8 (2018) 637–640. [Google Scholar]
  13. J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics. Cambridge University Press (1998). [CrossRef] [Google Scholar]
  14. Y. Kawano, L. Gong, B.D.O. Anderson and M. Cao, Evolutionary dynamics of two communities under environmental feedback. IEEE Control Syst. Lett. 3 (2018) 254–259. [Google Scholar]
  15. R. Liu and G. Liu, Dynamics of a stochastic three species prey-predator model with intraguild predation. J. Appl. Anal. Comput. 10 (2020) 81–103. [Google Scholar]
  16. L. Liu, X. Chen and A. Szolnoki, Evolutionary dynamics of cooperation in a population with probabilistic corrupt enforcers and violators. Math. Models Meth. Appl. Sci. 29 (2019) 2127–2149. [Google Scholar]
  17. Q. Luo, L. Liu and X. Chen, Evolutionary dynamics of cooperation in the n-person stag hunt game. Physica D 424 (2021) 132943 [CrossRef] [Google Scholar]
  18. B.K. Lynn and P. De Leenheer, Division of labor in bacterial populations. Math. Biosci. 316 (2019) 108257 [Google Scholar]
  19. J. Maynard Smith, Evolution and the Theory of Games. Cambridge University Press (1982). [CrossRef] [Google Scholar]
  20. M.A. Nowak, Evolving cooperation. J. Theor. Biol. 299 (2012) 1–8. [Google Scholar]
  21. M.A. Nowak and K. Sigmund, Evolutionary dynamics of biological games. Science 303 (2004) 793–799. [CrossRef] [PubMed] [Google Scholar]
  22. M.A. Nowak, A. Sasaki, C. Taylor and D. Fudenberg, Emergence of cooperation and evolutionary stability in finite populations. Nature 428 (2004) 646–650. [CrossRef] [PubMed] [Google Scholar]
  23. P. Oliver, Rewards and punishments as selective incentives for collective action: theoretical investigations. Am. J. Sociol. 85 (1980) 1356–1375. [Google Scholar]
  24. M. Perc, J.J. Jordan, D.G. Rand, Z. Wang, S. Boccaletti and A. Szolnoki, Statistical physics of human cooperation. Phys. Rep. 687 (2017) 1–51. [Google Scholar]
  25. M. Perc, Phase transitions in models of human cooperation. Phys. Lett. A 380 (2016) 2803–2808. [CrossRef] [Google Scholar]
  26. H. Qi, X. Meng, T. Hayat and A. Hobiny, Stationary distribution of a stochastic predator–prey model with hunting cooperation. Appl. Math. Lett. 124 (2022) 107662 [Google Scholar]
  27. S. Qin, G. Zhang, H. Tian, W. Hu and X. Zhang, Dynamics of asymmetric division of labor game with environmental feedback. Physica A 543 (2020) 123550 [CrossRef] [MathSciNet] [Google Scholar]
  28. T. Sasaki and T. Unemi, Replicator dynamics in public goods games with reward funds. J. Theor. Biol. 287 (2011) 109–114. [Google Scholar]
  29. T. Sasaki and S. Uchida, Rewards and the evolution of cooperation in public good games. Biol. Lett. 10 (2014) 20130903 [Google Scholar]
  30. J. Sotomayor, Generic bifurcations of dynamical systems. Dynam. Syst. 1973 (1973) 561–582. [Google Scholar]
  31. A. Szolnoki, G. Szabó and M. Perc, Phase diagrams for the spatial public goods game with pool punishment. Phys. Rev. E 83 (2011) 036101 [CrossRef] [PubMed] [Google Scholar]
  32. M.A. Taha and A. Ghoneim, Zero-determinant strategies in infinitely repeated three-player prisoner’s dilemma game. Chaos Soliton. Fract. 152 (2021) 111408 [Google Scholar]
  33. J. Tanimoto, Fundamentals of evolutionary game theory and its applications. Springer (2015). [Google Scholar]
  34. Y. Usui and M. Ueda, Symmetric equilibrium of multi-agent reinforcement learning in repeated prisoner’s dilemma. Appl. Math. Comput. 409 (2021) 126370 [Google Scholar]
  35. Q. Wang, N. He and X. Chen, Replicator dynamics for public goods game with resource allocation in large populations. Appl. Math. Comput. 328 (2018) 162–170. [Google Scholar]
  36. Q. Wang, L. Liu and X. Chen, Evolutionary dynamics of cooperation in the public goods game with individual disguise and peer punishment. Dyn. Games Appl. 10 (2020) 764–782. [Google Scholar]
  37. X. Wang, W. Chen and J. Zhao, The evolution of cooperation within the multigame environment based on the particle swarm optimization algorithm. Phys. Lett. A 384 (2020) 126165 [CrossRef] [MathSciNet] [Google Scholar]
  38. T.A. Wettergren, Replicator dynamics of an N-player snowdrift game with delayed payoffs. Appl. Math. Comput. 404 (2021) 126204 [Google Scholar]
  39. J.W. Weibull, Evolutionary game theory. MIT Press (1997). [Google Scholar]
  40. H. Yuan and X. Meng, Replicator dynamics of division of labor games with delayed payoffs in infinite populations. Chaos Soliton. Fract. 158 (2022) 112058 [Google Scholar]
  41. H. Yuan, X. Meng and Z. Li, Natural selection between two games with environmental feedback. Int. J. Biomath. 14 (2021) 2150055 [Google Scholar]
  42. B. Zhang, C. Li and Y. Tao, Evolutionary stability and the evolution of cooperation on heterogeneous graphs. Dyn. Games Appl. 6 (2016) 567–579. [Google Scholar]
  43. C. Zhang, Q. Li, Z. Xu and J. Zhang, Stochastic dynamics of division of labor games in finite populations. Knowledge-Based Syst. 155 (2018) 11–21. [Google Scholar]
  44. C. Zhang, Q. Li, Y. Zhu, J. Han and J. Zhang, Evolutionary dynamics in division of labor games on cycle networks. Eur. J. Control 53 (2020) 1–9. [CrossRef] [MathSciNet] [Google Scholar]
  45. S. Zhang, T. Zhang and S. Yuan, Dynamics of a stochastic predator-prey model with habitat complexity and prey aggregation. Ecol. Complex. 45 (2021) 100889 [Google Scholar]
  46. P. Zhu, H. Guo, H. Zhang, Y. Han, Z. Wang and C. Chu, The role of punishment in the spatial public goods game. Nonlinear Dyn. 102 (2020) 2959–2968. [Google Scholar]
  47. G. Zhao, H. Li, P. Duan and F.E. Alsaadi, Survey on applications of semi-tensor product method in networked evolutionary games. J. Appl. Anal. Comput. 10 (2020) 32–54. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.