Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 2
Number of page(s) 23
Section Mathematical methods
Published online 19 January 2023
  1. S. Bubeck, L. Devroye and G. Lugosi, Finding Adam in random growing trees. Random Struct. Algor. 50 (2017) 158–172. [CrossRef] [Google Scholar]
  2. K. Cai, H. Xie and J.C.S. Lui, Information spreading forensics via sequential dependent snapshots. IEEE/ACM Trans. Netw. 26 (2018) 478–491. [CrossRef] [Google Scholar]
  3. W. Dong, W. Zhang and C.W. Tan, Rooting out the rumor culprit from suspects, in IEEE International Symposium on Information Theory (2013) 2671–2675. [Google Scholar]
  4. M. Draief and L. Massouli, Epidemics and rumours in complex networks. Cambridge University Press (2010). [Google Scholar]
  5. M. Drmota, Random trees: an interplay between combinatorics and probability. Springer Science & Business Media (2009). [Google Scholar]
  6. S. Feizi, M. Medard, G. Quon, M. Kellis and K. Duffy, Network infusion to infer information sources in networks. IEEE Trans. Netw. Sci. Eng. 6 (2019) 402–417. [CrossRef] [Google Scholar]
  7. J.A. Firth, J. Hellewell, P. Klepac, S. Kissler, A.J. Kucharski and L.G. Spurgin, Using a real-world network to model localized COVID-19 control strategies. Nat. Med. 26 (2020) 1616–1622. [CrossRef] [PubMed] [Google Scholar]
  8. A. Frieze and W. Pegden, Looking for vertex number one. Ann. Appl. Probab. 27 (2017) 582–630. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Jiang, S. Wen, S. Yu, Y. Xiang and W. Zhou, K-center: an approach on the multi-source identification of information diffusion. IEEE Trans. Inf. Forensics Secur. 10 (2015) 2616–2626. [CrossRef] [Google Scholar]
  10. J. Jiang, S. Wen, S. Yu, Y. Xiang and W. Zhou, Identifying propagation sources in networks: state-of-the-art and comparative studies. IEEE Commun. Surv. Tutor. 19 (2017) 465–481. [CrossRef] [Google Scholar]
  11. N. Kamiyama, Arborescence problems in directed graphs: theorems and algorithms. Interdiscip. Inf. Sci. 20 (2014) 51–70. [Google Scholar]
  12. P. Klepac, S. Kissler and J. Gog, Contagion! The BBC four pandemic - the model behind the documentary. Epidemics 24 (2018) 49–59. [CrossRef] [PubMed] [Google Scholar]
  13. A. Kumar, V.S. Borkar and N. Karamchandani, Temporally agnostic rumor-source detection. IEEE Trans. Signal Inf. Process. Netw. 3 (2017) 316–329. [Google Scholar]
  14. G. Lugosi and A.S. Pereira, Finding the seed of uniform attachment trees. Electr. J. Probab. 24 (2019) 15 pp. [Google Scholar]
  15. W. Luo, W.P. Tay and M. Leng, How to identify an infection source with limited observations. IEEE J. Selected Topics Signal Process. 8 (2014) 586–597. [CrossRef] [Google Scholar]
  16. M. Newman, Networks. Oxford University Press (2018). [Google Scholar]
  17. C. Nowzari, V.M. Preciado and G.J. Pappas, Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Control Syst. Mag. 36 (2016) 26–46. [Google Scholar]
  18. R. Paluch, X. Lu, K. Suchecki, B.K. Szymañski and J.A. Holyst, Fast and accurate detection of spread source in large complex networks. Sci. Rep. 8 (2018) 1–10. [Google Scholar]
  19. R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, Epidemic processes in complex networks. Rev. Mod. Phys. 87 (2015) 925. [CrossRef] [Google Scholar]
  20. R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86 (2001) 3200. [CrossRef] [PubMed] [Google Scholar]
  21. P.C. Pinto, P. Thiran and M. Vetterli, Locating the source of diffusion in large-scale networks. Phys. Rev. Lett. 109 (2012) 068702. [CrossRef] [PubMed] [Google Scholar]
  22. M. Salathe, M. Kazandjieva, J.W. Lee, P. Levis, M.W. Feldman and J.H. Jones, A high-resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci. 107 (2010) 22020–22025. [CrossRef] [PubMed] [Google Scholar]
  23. D. Shah and T. Zaman, Detecting sources of computer viruses in networks: theory and experiment, in ACM SIGMETRICS Perf Eval Rev, vol. 38 (2010) 203–214. [CrossRef] [Google Scholar]
  24. D. Shah and T. Zaman, Rumor centrality: a universal source detector, in ACM SIGMETRICS Perf Eval Rev, vol. 40 (2012) 199–210. [CrossRef] [Google Scholar]
  25. S. Shelke and V. Attar, Source detection of rumor in social network - a review. Online Social Netw. Media 9 (2019) 30–42. [CrossRef] [Google Scholar]
  26. W. Tang, F. Ji and W.P. Tay, Estimating infection sources in networks using partial timestamps. IEEE Trans. Inf. Forens. Secur. 13 (2018) 3035–3049. [CrossRef] [Google Scholar]
  27. P.-D. Yu, C.W. Tan and H.-L. Fu, Epidemic source detection in contact tracing networks: epidemic centrality in graphs and message-passing algorithms. IEEE J. Selected Top. Signal Process. 16 (2022) 234–249. [CrossRef] [Google Scholar]
  28. K. Zhu, Z. Chen and L. Ying, Catch’em all: Locating multiple diffusion sources in networks with partial observations, in AAAI Conference on Artificial Intelligence (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.