Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 18, 2023
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 25 | |
Section | Mathematical methods | |
DOI | https://doi.org/10.1051/mmnp/2023002 | |
Published online | 15 February 2023 |
- M. Aouadi, Asymptotic behavior in nonlocal Mindlin’s strain gradient thermoelasticity with voids and microtemperatures. J. Math. Anal. Appl. 5141 (2022) 126268. [CrossRef] [Google Scholar]
- M. Aouadi, F. Passarella and V. Tibullo, Exponential stability in Mindlin’s Form II gradient thermoelasticity with microtemperatures of type III. Proc. R. Soc. A476 (2020) 20200459. [CrossRef] [PubMed] [Google Scholar]
- M. Aouadi, M. Ben Bettaieb and F. Abed-Meraim, Analyticity of solutions to thermo-elastic-plastic flow problem with microtemperatures. Z. Angew. Math. Mech. 101 (2021) 11. [CrossRef] [Google Scholar]
- T.A. Apalara, On the stability of porous-elastic system with microtemparatures. J. Therm. Stress. 42 (2019) 265–278. [CrossRef] [Google Scholar]
- V. Barbu, Nonlinear differential equations of monotone types in Banach spaces, Vol. 190 of Springer Monographs in Mathematics. Springer, New York (2010) [CrossRef] [Google Scholar]
- A. Benabdallah and D. Teniou, Exponential stability of a von Karman model with thermal effects. Elect. J. Differ. Equ. 7 (1998) 1–13. [Google Scholar]
- A. Benabdallah, Modelling of von Karman system with thermal effects. Prépublications de l’équipe de mathématiques de Besançon no 99/05, 1999. [Google Scholar]
- A. Benabdallah and I. Lasiecka, Exponential decay rates for a full von Karman system of dynamic thermoelasticity. J. Differ. Equ. 160 (2000) 51–93. [CrossRef] [Google Scholar]
- L. Bouzettouta and A. Djebabla, Exponential stabilization of the full von Kármán beam by a thermal effect and a frictional damping and distributed delay. J. Math. Phys. 60 (2019) 041506. [CrossRef] [MathSciNet] [Google Scholar]
- A. Favini, M.A. Horn, I. Lasiecka and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation. Differ. Integral Equ. 9 (1996) 267–294. [Google Scholar]
- P. Casas and R. Quintanilla, Exponential stability in thermoelasticity with microtemperatures. Int. J. Eng. Sci. 43 (2005) 33. [CrossRef] [Google Scholar]
- P. Chadwick, On the propagation of thermoelastic disturbances in thin plates and rods. J. Mech. Phys. Solids 10 (1962) 99–109. [CrossRef] [MathSciNet] [Google Scholar]
- A. Choucha and D. Ouchenane, Well posedness and stability result for a microtemperature full von Kármán beam with inflnite-memory and distributed delay terms. Math. Meth. Appl. Sci. 45 (2022) 6411–6434. [CrossRef] [Google Scholar]
- I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun. Partial. Differ. Equ. 27 (2002) 1901–1951. [CrossRef] [Google Scholar]
- A. Djebabla and N.E. Tatar, Exponential stabilization of the full von Kármáan beam by a thermal effect and a frictional damping. Georgian Math. J. 20 (2013) 427–438. [CrossRef] [MathSciNet] [Google Scholar]
- M.J. Dos Santos, M.M. Freitas, A.J.A. Ramos, D.S. Almeida Junior and L.R.S. Rodrigues, Long-time dynamics of a nonlinear Timoshenko beam with discrete delay term and nonlinear damping. J. Math. Phys. 61 (2020) 061505. [CrossRef] [MathSciNet] [Google Scholar]
- H. Dridi and A. Djebabla, On the stabilization of linear porous elastic materials by microtemperature effect and porous damping. Ann. Univ. Ferrara. 2 (2020) 13–25. [CrossRef] [MathSciNet] [Google Scholar]
- D.E. Carlson, Linear thermoelasticity, in: Handbuch der Physik, Band VIa/2, Springer-Verlag, Berlin (1972), pp. 297–345. [Google Scholar]
- C. Giorgi and M.G. Naso, Modeling and steady state analysis of the extensible thermoelastic beam. Math. Comput. Model. 53 (2011) 896–908. [CrossRef] [Google Scholar]
- R. Grot, Thermodynamics of a continuum with microstructure. Int. J. Eng. Sci. 7 (1969) 801. [CrossRef] [Google Scholar]
- D. Hanni, A. Djebablaa and N.E. Tatar, Well-posedness and exponential stability for the von Kàrmàn systems with second sound. Eur. J. Math. Comp. Appl. 7 (2019) 52–65. [Google Scholar]
- M.A. Horn and I. Lasiecka, Global stabilization of a dynamic von Karman plate with nonlinear boundary feedback. Appl. Math. Optim. 31 (1995) 57–84. [CrossRef] [MathSciNet] [Google Scholar]
- D. Iesan and R. Quintanilla, On a theory of thermoelasticity with microtemperatures. J. Therm. Stress. 23 (2000) 199–215. [CrossRef] [Google Scholar]
- D. Iesan and R. Quintanilla, On thermoelastic bodies with inner structure and microtemperatures. J. Math. Anal. Appl. 354 (2009) 12–23. [CrossRef] [MathSciNet] [Google Scholar]
- D. Iesan and R. Quintanilla, Qualitative properties in strain gradient thermoelasticity with microtemperatures. Math. Mech. Solids 23 (2018) 240–258. [CrossRef] [MathSciNet] [Google Scholar]
- H.E. Khochemane, Exponential stability for a thermoelastic porous system with microtemperatures effects. Acta. Appl. Math. 173 (2021) 1–14. [CrossRef] [MathSciNet] [Google Scholar]
- J.E. Lagnese and G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Diff. Eq. 91 (1991) 355–388. [CrossRef] [Google Scholar]
- J.E. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, PA (1989). [Google Scholar]
- I. Lasiecka, T.F. Ma and R.N. Monteiro, Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discr. Cont. Dyn. Syst. 23 (2018) 1037–1072. [Google Scholar]
- L. Lin, Q. Pei, J. Xu and H. Guo, A microfabricated temperature sensor for hyperthermia, in Proc. 5th IEEE Int. Conf. Nano/Micro Eng. Mol. Syst. (NEMS), Xiamen, China, IEEE (2010), pp. 578–581. [Google Scholar]
- W. Liu, K. Chen and J. Yu, Asymptotic stability for a nonautonomous full von Kármán beam with thermo-viscoelastic damping. Appl. Anal. 97 (2018) 400–414. [CrossRef] [MathSciNet] [Google Scholar]
- W. Liu, K. Chen and J. Yu, Existence and general decay for the full von Kaarmaan beam with a thermo-viscoelastic damping, frictional dampings and a delay term. IMA J. Math. Cont. Inf. 34 (2017) 521–542. [Google Scholar]
- P.X. Pamplona, J.E. Munoz Rivera and R. Quintanilla, Analyticity in porous-thermoelasticity with microtemperatures. J. Math. Anal. Appl. 394 (2012) 645–655. [CrossRef] [MathSciNet] [Google Scholar]
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). [Google Scholar]
- M. Saci, H.E. Khochemane and A. Djebabla, On the stability of linear porous elastic materials with microtemperatures effects and frictional damping. Appl. Anal. 101 (2022) 2922–2936. [CrossRef] [MathSciNet] [Google Scholar]
- M. Saci and A. Djebabla, On the stability of linear porous elastic materials with microtemperatures effects. J. Therm. Stress. 43 (2020) 1300–1315. [CrossRef] [Google Scholar]
- Cz. Wozniak, Thermoelasticity of the bodies with microstructure. Arch. Mech. Stos. 19 (1967) 335. [Google Scholar]
- Z. Yang, Y. Zhang, T. Itoh and R. Maeda, Flexible implantable microtemperature sensor fabricated on polymer capillary by programmable UV lithography with multilayer alignment for biomedical applications. J. Micro. Syst. 23 (2014) 21–29. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.